3 [ DIFFERENTIATION RULES

3.1 Derivatives of Polynomials and Exponential Functions

et —1
1. (a) e is the number such that }llin%) == 1,
®) -
x (2.7° - 1)/z x (2.8 —1)/z

-0.001 0.9928 —0.001 1.0291

—0.0001 0.9932 —0.0001 1.0296

0.001 0.6937 0.001 1.0301

0.0001 0.¢933 0.0001 1.0297

: . 2701 . 28h - .
From the tables (to two decimal places), ;llm%) 5 =0.99 and Fllm%) = 1.03. Since

099 <1<1.03,27<e<28.

3. f(z) = 186.5 is a constant function, 5o its derivative is 0, thatis, f'(z) = 0.
5 f(z)=5z—-1 = f(z)=5-0=5
1. fz)=2*+3c—4 = fl(z)=22"""+3-0=22+3
8. f(H) =L@ +8) = f()=3("+8) =37 +0) =1
2
_ .—2/5 _ 2 (-2/8)-1 _ _2,.-T7/5 _ _
Ny=22° = o =-220% =277 = P

1B.VE)=4rm® = V()= 47 (3r7) == 4mr?
5. V() =6t = Y'(t)=6(-9)t""= —54¢~10

17. G(z) = vz — 2" =2'/* —2¢* = G'(z)= 1g71/? - 2" = 2—1—\/5 — 2
19. F(z) = (32)° = (%)Bms =%z* = F(z)= &(52") = gat

. g(x) =2+ % =2242? = k) =22+ (2)z % =22- f—

2
4
23.y:u\7_z—t§=m3/2+4$1/2+3m_1/2 =
/ 2 3
_. 3..1/2 1 —1/2 1 —-3/2 _. 3
y'—Em/ +4(§):ﬂ / —|~3(-—5)m —§ﬁ+75*m

[note that 2*/% = 2?/? . 2!/ = m\/E]

25, y =4r®> = y = Osince 4n” is a constant.

21.y=az® +bz+c = y =2ax+b

1 3
42 _ — 42 _ —3/4 I _(_B\4—T/4 — 2 _
Bo=t'—m=t-t = o =2- (-3 %+ gaa =2 s

A Bev = Ay 4 Be¥ = 2 =—10Ay~' + Be¥ = —10714 + Be?
Y

31.2251—0
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B flz)=e" -5z = f'(z)=€"—5.

5

]

\.

I J

Notice that f'(z) = 0 when f has a horizontal

tangent, f' is positive when f is increasing, and f’

—5

is negative when f is decreasing.

3. f(z) =3z -52° +3 =
f'(z) = 45z — 152°.

8

m\\\f%wwmm ]
-1.2 L \ 1.2
i £

|
i

-9
Notice that f'(z) = 0 when f has a horizontal

tangent, f' is positive when f is increasing, and f’

is negative when f is decreasing.

37. To graphically estimate the value of f'(1) for f(z) = 3z — z°, we’ll graph f in the viewing rectangle

[1 -0.1,1+0.1] by {£(0.9), f(1.1)], as shown in the figure. [When assigning values to the window variables, it is

convenient to use Y1(0.9) for Ymin and Y1(1.1) for Ymax.] If we have sufficiently zoomed in on the graph of f, we

should obtain a graph that looks like a diagonal line; if not, graph again with 1 — 0.01 and 1 + 0.01, etc.

Estimated value:

)=

Exact value: f(z) = 32° — x

2.209 — 1701 _ 0.589
1.1-0.9 ~ 02

3

so f'(1)=6-~3=3.

39 y =z + 2¢°

ory =2x -+ 2.

N y=3z%—23

0 an equation of the tangent line is y — 2 = 3(z -- 1),

ory =3z — 1.

2.99.

= f'(z) = 6z — 322,

2.299

0.9 . 1.1
1.701

= ¢y =42® +2e%. At(0,2),7 = 2 and an equation of the tangent line is y — 2 = 2(z — 0)

= o =6z—3z% At (1,2),yY =6-3=3, 5
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43. (a) 50 (b)

-10
From the graph in part (a), it appears that f’ is zero at
x1 &~ —1.25, 22 = 0.5, and x3 = 3. The slopes are negative (so
J’ is negative) on {—co, z1) and (z2, z3). The slopes are positive
(so f' is positive) on (x1, T2) and (z3,00).
© flz)=2*-32% - 62> +724+30 = 100

fl(x) = 42® — 92 — 122 4+ 7

T~

45. The curve y = 2> + 322 — 122 + 1 has a horizontal tangent when ' = 622 + 6z — 12 =0 <

6(z*+2z-2)=0 & 6(z+2)(z—-1)=0 <& z=—20rz= 1. The points on the curve are -2,21
p

and (1, —6).

4. y =622 +52—-3 = m=1y =182 +5,butz® > 0forall z, so m > 5 for all z.

49, y Let (a, a®) be a point on the parabola at which the tangent line passes
ad through the point (0, —4). The tangent line has slope 2a and equation
. y—(—4) =2a(z - 0) & y=2az — 4. Since (a,a?) also les on
0 x the line, a® = 2a(a) — 4, or a®> = 4. So @ = =2 and the points are (2, 4)
0, -4 and (—2,4).
5. y=f(z) =1—2® = f'(z) = —2z, so the tangent line at (2, —3) has %): _
slope f'(2) = —4. The normal line has slope —%4 = i and equation 0 x

— 1 . —i,._ 7
y+3=5(r—-2)ory=gr— 1. o

n
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1 1

oy — e JEFR)—f@) . zth oz z—(z+h)
8. f(z) = limy h I S Sl e Ey 5

-1 1

=1 — =1 -
hs0 hz(xz + h) }ILIE%J z(z + h) x?

5. f(z) =2 —zifz < land f(z) = 2 — 2z + 2if z > 1. Now we compute the right- and left-hand derivatives

defined in Exercise 2.9.46:
)= i LEFR I 2201 TR 1= 21 and
h—0— h h—0— h h—0— h h—0—

)= m AR S Q4RI r2-1 A

1 — = lim h=0
h—0+ h—0+ h hoot B oo
Thus, f/(1) does not exist since £ (1) # f (1), y y
so f is not differentiable at 1. But f'(z) = —1 f y
forz < land f'(z) =2z~ 2ifx > 1.
.1 o 1 *
0 x

57. (a) Note that 2 —9 < Oforz® <9 < |z
-9 ifx<-3
flz)y=< —-2*+9 if 3<z<3 =»
-9 ifz>3
2z if z< -3
fl@)=<¢ -2z if -3<z<3
2z if z>3

<3 & -3<z<3 So

2x if |z| >3
| 22 if z| <3

fB+h) - f(

To show that f’(3) does not exist we investigate }Sir% 9 3) by computing the left- and right-hand

derivatives defined in Exercise 2.9.46.
_ (" 2 _
£8) = tm f(3+h’1 f8) _ o [2B+R? 49 -0

= lim (-6 —h)=—6 and

—0— h—0— h h—0—

L JEERF@) L [BERP-8]-0 L ehen? _
f4(3) = lim, h S h SRR TR ot
Since the left and right limits are different, (b) Y y /

9,
_ f
lim M does not exist, that is,
h—0 h
N0
f'(3) does not exist. Similarly, f’'(—3) does not f 3 N3 *

exist. Therefore, f is not differentiable at 3 or

at —3. -3 0 3 X /
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The notations 2 and 2 indicate the use of the Product and Quotient Rules, respectively.

/(m)__(2m+1)(3)—(3x—1)(2)_6a:+3—6a:+2_ 5
7= (2z +1)? T (2z+1)2  (2r+1)2

3xr—1 or

1 9(@®) =50

9. V(z) = (22 + 3)(z* - 22) =

V'(z) = (22° + 3)(4z® — 2) + (z* ~ 22)(62°) = (8% + 82 — 6) + (62° — 122%) = 142°® —42® - 6
1 3 _ _
1. Fy) = (; - y—4>(y+5y3) =2 -3yt (y+5°) =
F'(y) = (y‘2 - 3y_4)(1 + 15y2) + (y + 5y3) (—2y_3 -+ 12y_5)
=(y 2 +15-3y* —45y7%) + (-2 2 + 12474 — 10+ 60y~ 7)
=5+14y 2+ 9y~ or 5+14/47 +9/y*
_ t2 QR
Y= 3¢ "2t+1
(3t —2t +1)(2t) —t°(6t —2)  2¢[3t° — 2t +1 — (3t — 1)]

13.

7

v= (362 — 2t + 1)° - (362 — 2t + 1)°
a3 -2t+1-32+1)  2(1-1)
- (3t2 — 2t +1)? T (32 -2t +1)

15. y = (r’ — 2r)e” B = (r*=2r)(e") +e"(2r—2) = e(r*—2r+2r—2) = e(r’ —2)

3_
17. y = u —duv =02 -2 u=0v2-20"2 == ¢ 221)—2(%)'0“1/2 =2 —v V2
v

1 -1 2%%—1
We can change the form of the answer as follows: 2v — vV =0y - — = 20y =2

Vv Vv Vv
1 . (z* + 2% +1)(0) — 1 (42® + 2x) 2z(22% +1)
By=rmr = V= PRTC == 2
i+ z?+1 (zf+ 2% 4+1) (z¢+ 22+ 1)
T
2. f(z) = oy
Fa) = (x+c/z)(1)—z(l—c/z?) z4cjz—z+c/z _ 2c/x 2} 2m
(e+2)° 2 te)’ @+ & (@+0)
z z Tz
2. y= zz-fl = o = (z + 125_)}_;)(2%)(1) -G f - At (1,1),y" = , and an equation of the tangent line

isy—1=2%z-1),0ry=3z+3.

25 y=2ze> = y =2z - +e"-1)=2e"(x+1). At (0,0),y' =2e°(0+1)=2-1-1=2andan
equation of the tangent line is y — 0 = 2(z — 0), ory = 2.

1
21. (@ y = f(z) = 1542 ®) L5
, (1+2%)(0) —1(22) —2z
= S . So the sl f th
PO = rmy Ty SO 109
. . . 2 : _
tangent line at the point (—1, 1) is f/(—1) = ik 1 and its 4L J4

equationisy — 1 = Xz +1)ory = 2+ 1. -0.5
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x 37,z 2 2 x r
e , 2(e®) —e’(32%)  2%*(x—3) e (z—-3)
(a) _f(il‘) = m3 = f (fl:) ($3)2 - fEG - _7;4
(b) 5 f' = 0 when f has a horizontal tangent line, f’ is negative when

f is decreasing, and f’ is positive when £ is increasing.

We are given that f(5) = 1, f/(5) =6, g(5) = —3,and ¢'(5) = 2.
@ (f9)'(5) = f(5)g'(5) + 9(5)f'(5) = (1)(2) + (=3)(6) =2~ 18 = ~16
®) (5)’ 3) = g(5)f'(5) — £(5)g'(5) __ (=3)(6) —(1)(2) _ _20

—~3

[9(5))? (=3)? 9
9\ s _ fB)F(5) —g(B)f'(5) __ (1)(2) - (=3)(6) _

f(-’I?) = ewg(m) = f’(ﬂ?) = ewg’(m) —I—g(m)ez — " [g'(ac) +g(z)],
F(0)=e[g'(0) +9(0)] =1(5+2) =7

(a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1,2) is on the graph of f;
g(1) = 1 since the point (1, 1) is on the graph of g; f'(1) = 2 since the slope of the line segment between (0, 0)

and (2,4) is 5°0 = 2; ¢’(1) = —1 since the slope of the line segment between (—2, 4) and (2, 0)
s gy = 1 Nowu(s) = (a)o(@).sou/ (1) = F(VG' (1) + (1) F/(1) =2+ (1) +1-2 =0,
(5) — ' 2(-1)y 3.2 =8
® (o) = 1(0)/s(o) s0v/(5) = LALELSDTE) _ o) o805 =532

@y=zg(z) = ¢ =z¢(z)+g(@) 1=2zd(z)+g(z)

_ T ,_g(@) - 1-azd (@) _ g(z)—=zg'(x)
®y=tm T Y W@P o@)?

Ou-12 o y_HE- g1 _ 5w de)

If P(t) denotes the population at time ¢ and A(¢) the average annual income, then T'(t) = P(t) A(¢) is the total
personal income. The rate at which T'(¢) is rising is given by T (¢t) = P(¢)A'(¥) + AQ)P'(t) =
T'(1999) = P(1999) A’ (1999) + A(1999)P’(1999) = (961,400)($1400/yr) + ($30,593)(9200/yr)
= $1,345,960,000/yr + $281,455,600/yr = $1,627,415,600/yr

So the total personal income was rising by about $1.627 billion per year in 1999.

The term P(t)A’(t) ~ $1.346 billion represents the portion of the rate of change of total income due to the
existing population’s increasing income. The term A(t)P’(¢) ~ $281 million represents the portion of the rate of
change of total income due to increasing population.
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a 1 e a 1
pon ICESIE (z — a). This line passes through (1,2) when 2 — Py CEI

2a+1)?—ala+1)=1-a < 2a°+4a+2-a*~a—-1+a=0 & a’+4a+1=0.
—4+./2 —41)Q) -
1@ 4i2x/ﬁz_2i¢3

. When z = a, the equation of the tangent

line isy — (1—a) <

The quadratic formula gives the roots of this equation as a = =

2(1)
so there are two such tangent lines. Since p 6
—24++/3 —-2£v3 -1 3
f<—2i\/§>: V3 _ V3 Z1Fv3 : ©.2)
—2+V3+1 -1£V3 -1F3 " A :
2+2V3FV3-3 -1+v3 _1F43
B 1-3 o2 27 (
J

the lines touch the curve at A(—2 +4/3, 1—_2‘§) a3 (—0.27,-0.37) and ' -6

B(-2 -3, 1548) ~ (~3.73,1.37).
We will sometimes use the form f'g + fg’ rather than tre form fg’ + g £ for the Product Rule.
8. (a) (fgh) = [(fo)h) = (f9)'h + (F)b' = ("g+ fg)h+ (fo)b' = f'gh + fg'h + foh’
(b) Putting f = g = h in part (a), we have
L@ = (P10 = P11+ I 1+ 11 =3F57 =3 @S (@),

—i 3z —i z\3 z\2 @ _ 2¢ T ... 3z
(C) dﬂ?(e )_dw(e) —3(6) e® = 3e™e” = 3e

3.3 Rates of Change in the Natural and Social Sciences

1. @s=f{t)=1t>-10t+12 = o(t)=f'(t)=2t-10
() v(3) = 2(3) — 10 = —4 ft/s
(c) The particle is atrest whenv(t) =0 < 24 -10=0 < ¢=5s.
(d) The particle is moving in the positive direction when v(t) >0 <« 2t-10>0 < 26>10 & t>5.

(e) Since the particle is moving in the positive direction (63 t=8,
and in the negative direction, we need to calculate the s=—4
distance traveled in the intervals [0, 5] and [%), 8] 1=5, <
separately. |f(5) — f(0)| = |—13 — 12| = 25 ftand =il 0,
|F(8) — f(B)| =|—4 — (—13)| = 9 ft. The total ) 12S
0

distance traveled during the first 8 s is 25 4+ 9 = 34 ft.
3. @s=f(t) =t —122 436t = w(t)=f(t)=3t"~24t+ 36
(b) v(3) =27 - 72+ 36 = -9 ft/s
(c) The particle is at rest when v(¢) = 0. 3t* — 24t +36 =0 = 3(t—2)(t—-6)=0 = t=2sor6s.
(d) The particle is moving in the positive direction when v(t) > 0.3{(t = 2)(t —6) >0 < 0<t<2ort>6.
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(e) Since the particle is moving in the positive direction and in the f)

W 00
o v

I

t
negative direction, we need to calculate the distance traveled in the :
intervals [0, 2], [2, 6], and [6, 8] separately.

1£(2) = £(0)] = |32 — 0] = 32.

I£(6) — f(2)] = |0 — 32| = 32.

£(8) — f(6)] = [32 - 0] = 32.
The total distance is 32 + 32 + 32 = 96 ft.
(#*—~1)(1)—t(2t)  1-¢

(#+1)? e+

1-(3* _1-9_ -8 2
(3241 102~ 100 25

L o~
LI A (1
[N,
(I
-

Lo ey

5. (a) s = = o(t)=5'(t) =

t
t2+1

) v(3) = ft/s

(¢)Itisatrestwhenv =0 < 1-t*=0 < t=1s [t# —1sincet > 0]

(d) It moves in the positive direction whenv >0 < 1-— 2>0 & ?’<1 & 0<t<l

(e) Distance in positive direction = |s(1) - s(0)] = |3 — 0| = 3 ft
Distance in negative direction = |s(8) -- s(1)] = | & — 3| = £ ft
Total distance traveled = § + 2= = &/ ft

[l
%

)

>

Gle

t
s

t
s s

0 1 S
2

1.s(t) =t —45> -7t = ovt)=5§t)=3*-9%-7=5 & 3 -0-12=0 <
3(t—4)(t+1)=0 < t=4 or --1.Sincet > 0, the particle reaches a velocity of 5 m/sat¢ = 4s.
dh

9. (@) h=10¢—0.83 = o(t) =5 = 10— L6650 v(3) = 10 - 1.66(3) = 5.02m/s.

]
oI —

t=0
s=0

10+ 17
1.66
The value t; = (10 — v/ 17) /1.66 corresponds to the time it takes for the stone to rise 25 m and

to = (10 + V17 ) /1.66 corresponds to the time when the stone is 25 m high on the way down. Thus,
v(t1) = 10 — 1.66[(10 — V17) /1.66] = V17 ~ 4.12 m/s.

M. (@) A(z) =2° = A'(z) =2z A'(15) = 30 mm?/mm is the /x(Ax) (Axy
Ax E) T

b)h=25 = 10t—0.83>=25 = 0.83°—10t+25=0 = t= =z 3.54 or 8.51.

rate at which the area is increasing with respect to the side length
as x reaches 15 mm.

(b) The perimeter is P(z) = 4z, so A’(z) = 2z = 1(4z) = ; P().
The figure suggests that if Az is small, then the change in the area x <+ x(Ax)
of the square is approximately half of its perimeter (2 of the 4 i
sides) times Az. From the figure, A4 = 22(Az) 4 (Az)% If
Az is small, then AA = 2z{Az) and so AA/Ax =~ 2z.
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13. (a) Using A(r) = 7r?, we find that the average rate of change is:
A(3) ~ A(2) _ 97 —4r A(25) — A(2) _ 6.25m —4n

W 5 s 2 05 "
Lo A1) - A(2)  44lm —4rw
=512 = o1 -7

(b) A(r) =nr? = A(r) =2nr,s0 A'(2) = 4.

(¢) The circumference is C(r) = 2nr = A’(r). The figure suggests that if Ar is
small, then the change in the area of the circle (a ring around the outside) is
approximately equal to its circumference times Ar. Straightening out this ring
gives us a shape that is approximately rectangular with length 277 and width
Ar,s0 AA = 27r(Ar). Algebraically,

AA = A(r + Ar) — A(r) = w(r + Ar)? - wr? = 2nr(Ar) + 7(Ar)2,
So we see that if Ar is small, then AA =~ 2n7(Ar) and therefore,
AA/Ar = 277,

15. S(r) = 4nr® = S'(r)=8mr =
(a) §'(1) = 8 ft?/ft (b) 8'(2) = 167 ft?/ft (c) §'(3) = 24 £ /ft

As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect
to the radius.

17. The mass is f(z) = 327, so the linear density at x is p(z) = f'(z) = 6.

(@) p(1) = 6 kg/m () p(2) = 12kg/m (©) p(3) = 18kg/m

Since p is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.
19. The quantity of charge is Q(t) = t> — 2t* + 6t — 2, so the current is Q' (t) = 3t* — 4t + 6.

(2) Q'(0.5) = 3(0.5)% - 4(0.5) + 6 =4.7T5 A ®Q(1)=3(1)?-4(1)+6=5A

The current is lowest when Q' has a minimum. Q" (t) = 6t — 4 < 0 when ¢ < . So the current decreases when

¢ < 2 and increases when ¢ > 2. Thus, the current is lowest at £ = £ s.

21. (a) To find the rate of change of volume with respect to pressure, we first solve for V' in terms of P.
C dv C
(b) From the formula for dV/d P in part (a), we see that as P increases, the absolute value of dV/dP decreases.
Thus, the volume is decreasing more rapidly at the beginning.
1dv 1 < C ) C C 1

©F=-vap="v\p) PP CP P

1860 — 1750 1 2070 — 1860 5y
B. (@) 1920: M2 = 15910 ~ 10— 1h™ = o35 g0 — 0 b
(m1 +mg2)/2=(11+ 21)/2 = 16 million/year
4450 — 3710 _ g4 5280 — 4450 _ gy
1980: m1 = J5g5 =970 ~ 10 ~ ™2 = 1990 — 1980 ~ 10 o

(mi1 +mz)/2 = (74 4+ 83)/2 = 78.5 million/year

(b) P(t) = at® + bt*> — ct + d (in millions of people), where a = 0.0012937063, b ~ —7.061421911,
¢ ~ 12,822.97902, and d ~ —7,743,770.396.
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) P(t) =at® +bt> +ct+d = P'(t) = 3at® + 2bt + ¢ (in millions of people per year)
(d) P'(1920) = 3(0.0012037063)(1920)? + 2(—7.061421911)(1920) + 12,822.97902
~ 14.48 million/year [smaller than the answer in part (a), but close to it]
P'(1980) ~ 75.29 million/year (smaller, but close)
(e) P'(1985) ~ 81.62 million/year, so the rate of growth in 1985 was about 81.62 million/year.

a’kt
- @ [C] = akt + 1
. d[C]  (akt+ 1)(a®k) — (a2kt) (ak)  ak(akt + 1 — akt) a’k
rate of reaction = —— = = =
dt (akt +1)2 (akt +1)2 (akt 4 1)2
a’kt a’kt + a — a’kt a
(b)Ifa:——[C],thena—z—a,—akt+1— ] =1
2 2
)2 a ___ak _d[C] _dz
SGikle =) _k<akt+1> =Rt - g ompat@) =g
a’kt (a®kt) /t a’k a’k
©ast =00 [0 = T “ Rt )~ ak+ (D ak - moles/L
2
@) Ao, Bl =06 g

dt (akt + 1)2
(e) As t increases, nearly all of the reactants A and B are converted into product C. In practical terms, the reaction
virtually stops.

(a) Usingv = 4i;7l (R* - r?) with R = 0.01, 1 = 3, P = 3000, and 7 = 0.027, we have v as a function of 7:

3000

P e 2_ .2 — 09F - A —_
11(7’)_4(0.027)3 (0.01% — 72). v(0) = 0.925 cm/s, v(0.005) = 0.694 cm/s, v(0.01) = 0.

- P (p_2 ') o= L (—op) = —£T —3 p— _
() v('r)—4nl (R*—r%) = (r):= 4?7l( 2r) = 2nl.Whenl—3,P—3000, and 7 = 0.027, we have

v'(r) = —ﬂ. v
2(0.027)3
(c) The velocity is greatest where r = 0 (at the center) and the velocity is changing most where r = R = 0.01 cm
(at the edge).

'(0) = 0, v'(0.005) = —92.592 (cm/s) /cm, and v/(0.01) = —185.185 (cm/s)/cm.

. (2) C(z) = 2000 + 3z + 0.01z% + 0.0002z® = C’'(z) = 3+ 0.02z + 0.00062>

(b) C’(100) = 3 + 0.02(100) + 0.0006(10,000) = 3 + 2 + 6 = $11/pair. C’(100) is the rate at which the cost is
increasing as the 100th pair of jeans is produced. It predicts the cost of the 101st pair.

(c) The cost of manufacturing the 101st pair of jeans is
C(101) — C(100) = (2000 4- 303 + 102.01 + 206.0602) — (2000 + 300 + 100 + 200)
=11.0702 ~ $11.07

@) A(z) = p(@) = A'(z)= 2p'(w) —pl@) - 1 e mp’(mzc; p(m) A'(z) >0 = A(z) is increasing; that

2
x
is, the average productivity increases as the size of the workforce increases.

p(z)

(b) p'(z) is greater than the average productivity = p'(z) > A(z) = p'(z) > X =

(@) > plx) = op(@)—pa)>0 = Mw = A)>0.
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PV PV 1
3. = T =) Rem——— = o
e nR ~ (10)(0.0821) ~ 0.821

(PV). Using the Product Rule, we have

dr 1 1
— T — P 4 t 4 = er—— — 1 1 . ~ —U. i .
7 = 0820 [POV'(t) + V(&) P'(t)] 0.821 [(8)(—0.15) + (10)(0.10)) 0.2436 K/min
35. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is,
dC aw
‘a? = 0 and E = 0.

(b} “The caribou go extinct” means that the population is zero, or mathematically, C' = 0.

(c) We have the equations % =aC — bCW and %g = —cW +dCW. LetdC/dt = dW/dt = 0, a = 0.05
b = 0.001, ¢ = 0.05, and d = 0.0001 to obtain 0.05C' — 0.001CW = 0 (1) and
—0.05W + 0.0001CW = 0 (2). Adding 10 times (2) to (1) eliminates the CW -terms and gives us
0.05C —0.5W =0 = C = 10W. Substituting C' = 10W into (1) results in
0.05(10W) —0.001(10W)W =0 <& 05W —001W2=0 <& 50W-W2=0 &
W(EO-W)=0 <« W =0or50.Since C = 10W, C = 0 or 500. Thus, the population pairs (C,w)
that lead to stable populations are (0, 0) and (£00, 50). So it is possible for the two species to live in harmony.

’

3.4 Derivatives of Trigonometric Functions

1l f(z) =2 —3sinz = f(z)=1-3cosz

d y=sinz+10tanz = ¢y =cosz+ 10sec’z
5. g(t) =t’cost = g'(t) =t*(—sint) + (cost) - 3t = 3t cost — t> sint or (3 cost — tsint)
1. h(8) =csch+ecotd =
W (9) = —cscOcot 8 + € (~ csc® 0) + (cot )e’ = ~cscBcot 6 + € (cot 6 — csc? 0)
oz s _ (cosz)(1) — (z)(—sinz) cosz+zsinz
Sy= cosz YT (cosx)? N cos? z
sec
1. 7(6) = 1+ secd
£10) = (1 —secf)(secOtand) — (secO)(secftand)  (secOtanf)[(1 +secd) —secl]  secftand
N (1 + sec§)? N (14 secf)? " (1 +sech)?

sinx o = z®cosz — (sinz)(2z)  x(zcosz — 2sing) __xzcosx —2sinz

5 @) = =

13.y =

15. y =sect tan® = y' =sech (sec”f) + tan 9 (sectanf) = sec (sec? 0 + tan® 0)

Using the identity 1 + tan® 8 = sec? 6, we can write alternative forms of the answer as

secf (142 tan? ) or sec (2 sec® 0 — 1)

1 i -1 - 1
17. == (cscw) = 4 ; = (sm:c)(O) 3 (o0 2) = .C(;SI v c?sx = —csczcotx
dz dr \ sinz sin® x sin® x sinz sinz
19, da (cot z) = d (C?S%) - (sinz)(— sina:') - (cosx)(cosx) _ _sinzw'—i—?coszm - 12 — — caer
dz dx \sinz sin® sin® z sin® x

21, y =tanz = y =sec’z = theslopeof the tangent line at (%, 1) is sec? = (\/5)2 = 2 and an equation
of the tangentlineisy — 1 = 2(z — §) ory =22+ 1 — Z.
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B.y=z+cosz = ¢ =1—sinz At(0,1),y' =1, and an equation of the tangent lineisy — 1 = 1(xz — 0}, or
y=x+1.

% () y=zcosz = y =z(—sinz)+cosz(l)=cosz —zsinz. (b) 1
So the slope of the tangent at the point (7, —) is 1 5
cosw — wsinm = —1 — 7(0) = —1, and an equation is

y+n=—(z—mjory = —2x.

L (a, —m)
-5
27. (@) f(z) =2z +cotx = f(z)=2--csc’x
(b) 6 Notice that f'(x) = 0 when f has a horizontal tangent.
' f' is positive when f is increasing and f’ is negative when f

is decreasing. Also, f'{x) is large negative when the graph

0 ki of f is steep.
VAR

—4

29, f(z) = z + 2sinz has a horizontal tangent when f'(z) =0 < 142cosz=0 <« cosz = -1 s

T = %” + 21n or ‘—1-3’—‘ + 27rn, where n is an integer. Note that 4?" and 2?” are =% units from 7. This allows us to

write the solutions in the more compact equivalent form (2n 4+ 1)7 &= %, n an integer.
31. (a) z(t) = 8sint = o(t) =a'(t) = &cost

(b) The mass at time ¢ = 2Z has position 7(%) = 8sin & = 8(@) = 4+/3 and velocity

v(%’i) = 8cos 235 = 8(—%) = —4. Since v(%’f) < 0, the particle is moving to the left.
3. From the diagram we can see that sin@ = /10 < 2 = 10sinf. We want to find the
rate of change of z with respect to §; that is, da/d6. Taking the derivative of the above
10 expression, dz/df = 10{cos #). So when § = %,
de/df = 10cos T =10(3) = 5 ft/rad

=
X
sin 3 . 3sin3x : .
35. lim = hn%) 3 [multiply numerator and denominator by 3]
T—r xTr— T
—31im 23T gz 0,3z — 0]
3z—0 3%
. sind o
=3 é% 7 [let 6 = Sx]
=3(1) [Equation 2]
37, lim tan6f lim sin 6t 1 1 — Jim 6 sin 6¢ lim 1 lim 2t
T £50 sin2t | ¢-0 t cosbt sin2t) =0 6t t—0 cos 6t t—0 2s8in2t
i 1
= 6im S0 iy L Ly 2L (1)1 2(1) =3

- lim = lim —— =
t—0 6t t—0cos6Bt 2 t—0sin2t
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. sin(cos ) sin (%i_r)% cos 9) sinl .
39. lim = - = —~ =3ginl
6—0 secl hr% sec @ 1
. cot2x . cos2xsinz (sinz)/x . il_r.% [(sinz)/z]
41. lim = lim - = lim cos 2z | =— = lim cos 2z - -
=0 ¢scxz =0  sin2x z—0 (sin2z)/x z—0 2 hr% [(sin 2z) /2]
1 1
=1 = =
2.1 2
43, Divide numerator and denominator by €. (sin # also works.)
sinf I sin @
sin @ . 0 650 0 1 1
6900 1 tand om0 . snf 1 sin 0 T "1+1.1 2
1 - — 1+ lim lim
0 0 9—0 6 6-0cosf
. S 5 — i e 2 2
. (a)itanm:ismm o gecty = SOSTCOST sin z (— sin x) _ cos” z +sin T Gosec?y = 1 .
dz dx cosx cos?z cos? x cos? x
: - :
) isecz: i L = secaxtanz = ( 08 z)(0) ( Smw).Sosec:ctanm: ﬂ.
dx dx cosx cos? z cos? z
dl
(c) diw (sinz + cosz) = E—%&E

cscx (—csc®z) — (1+ cotz)(—cscxcotx)  cscw [—csc® z + (1 + cotz) cot x)

cos T — sinr=

csc? csc?
—csc?z +cot?z +cotx __—l+cotz
csc T csc
. cotx —1
Socosz —sing = —.
csC T

41. By the definition of radian measure, s == rf, where r is the radius of the circle.

0 2 0
By drawing the bisector of the angle #, we can see that sin 5= %/T d = 2rsin 3

So Tim rf 2,002 . 62

s
LA S L ) B — 1. [This is just the reci imi
Jim == lim o Sn(6/7) Jim, 35m(0/2) Lim Sn(6/2) [This is just the reciprocal of the limit

lim Si’; z — 1 combined with the fact that as 8 —» 0, g —» ( also.]

z—0

3.5 The Chain Rule

— g(z) = — f(u) =si dy _ dydu _ -
1. Letu = g(z) =4z and y = f(u) = sinw. Then i = duds (cosu)(4) = 4cos4z.
3. Letu=g(z) =1—2z%andy = f(u) = u'®. Then £y _dugy (10u®)(—2z) = —20x(1 — :cz)g.
dr dudzx
5. Letu = g(z) = vz andy = f(u) = e
eV®

dy _dydu _ (1 -1/2) _vE. L _
Then dez  dudz = (e )(23: >_€ ;
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. F(z) = (2° +4x)7 = Flz)="7(z° +4:c)6(3:c2 +4) [or 7z°(z? —1—4)6(3302 +4)]

. Fz)= vV1+2z+23 = (1+2:z:+a:3)1/4 =

1

-3/4_d
4(1 4 2z + x3)%/*

XL

2 + 322 2+ 322

A+ +a)Y 80 21 29)®

Fl(z) = 3(1+ 2z + 2%) (1+2z+2%) = (24 32%)

1 4 -3 / 4 —4/..3 37,4 —4 -12¢°
= s (a1 = g(t)=—3(t* +1) 7 (4®) = —1263 (¢ + 1) * = ==L
g(t) tt+1)3 ( + ) g'(t) ( + ) ( ) ( + ) (t4+1)4
y=cos(a®+2°) = ¢ =—sin(a®+2°) 32 [a®isjustaconstant] = —3z?sin(a®+ 2°)
—mx ! —-mx d —mx —mx
y=e = y=e — (—mz) =e (-=m) = —me

dx

g(z) = (1+4z)*B +z—2*)® =

g@) =(1+42)° - 88+z—-23)"(1~-22) + 3+ — 22)% . 5(1 +42)* - 4
=4(1+4z)*(3+ z —2°)7 [2(1 + 42)(1 — 2x) + 5(3 + = — 2]
=4(1 +42)*(3 +x —2*)" [(2 + 4z — 162°) + (15 + 5z — 5z?))
= 4(1+42)* (3 +z — 2°)" (17 + 9z — 21z°)

y = (2z - 5)%(82% - 5)"° =

y' = 4(2z - 5)3(2)(82% - 5) 7 + (2 — 5)*(—3) (82 — 5) ~* (162)
= 8(2¢ — 5)° (8% — 5) ° — 48x(2a: — 5)* (8% — 5) "

[This simplifies to 8(2z — 5)° (8z? — 5) ™" (—42? + 30z — 5).]

2

y=ze ¥ = y = xe‘“z(—2m) te ™ 1=e" (—22° +1) = e (1-22?)

d : g
EEREE y':e“"”-d—(:ccosm)=e“°”[z(—s1nw)+(cosm)-1}=e“°”(cos:1:—:csmw)
T

ro=E1- () -
o0 - YE50) £ (15)- 4o et
_1E+DY? 41241 1(z4 1)V 2 1

26DV (+1P T 2(=-DF 1P (o112 (z + 1)

91
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r
2l y = ——
o r?+1
v o r? V24172 +1—¢2
y,_\/r2—+1(1)—r~%(r2+1)_1/2(2r)_” GRS P21
() L) (V)
2 2
(e Hl)—r 1 2 -3/2
= EX 3/20r(7" +1)
(VrZ+1) (r2+1)
Another solution: Write y as a product and make use of the Product Rule. y = r(r2 + 1) —1/2 =
y = r~—%(r2 +1)~3/2 (2r) + (7‘2 + 1)_1/2 o1l
= )T [ (24 ) = () ) = (24 1)
The step that students usually have trouble with is factoring out (1"2 + 1) ~3/2_ But this is no different than factoring
out z° from z2 + z°; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this
case, —% is smaller than —%.
29. y =tan(cosz) = 3y =sec’(cosz) (—sinz) = — sinzsec?(cos x)
31. Using Formula 5 and the Chain Rule, y = 2527 =
y =29""%(In2) . di (sinmz) = 29" (In 2) - cos 7 - 7 = 25" ™ (71 In 2) cos 7wz
z
3. y=(l+cos’z)® = y' =6(1+cos?z)® 2cosx (—sinz) = —12 cosz sinz (1 + cos® z)°
— el 2. _ 2 2
3. y = sec” z +tan”z = (secz)® + (tanz)® =
y' = 2(secx)(sec z tanz) + 2(tan ) (sec? z) = 2sec® xtanz + 2sec? ztanz = 4sec? ¢ tan
37. y = cot®(sinf) = [cot(sinf)]® =
y' = 2 [cot(sin8)] - sz@ [cot(sin 8)] = 2 cot(sin ) - [— csc®(sinB) - cos 6] = ~2cos 6 cot(sin ) csc?(sin 6)
By=varvi = ¥ =}@+vE) (1452 = —= <1+ , )
2z + vz 2y
N, y= sm(tan \/smm) =
y'= cos (tan \/Sll’ll’) 4 (tan s1na:) = cos (/tan vV sinw) sec? v/sinz - % (sinz)'/?
(tan \/sma:) sec? V/sinz - L(sinz)"? . cosz
= cos( ta smx) (sec sinz cos )
(tanv vame ) (57 )
B.y=(1+22)"" = ¢ =10(1+2z)° 2=20(1+22)° At(0,1),y = 20(1 4 0)° = 20, and an equation of
the tangent line is y — 1 = 20(z — 0), or y = 20z + 1.
4.y =sin(sinz) = 3 =cos(sinz)-cosz. At(r,0),y’ = cos(sinm) - cosm = cos(0) - (—1) = 1(~1) = —1,

and an equation of the tangent lineis y — 0 = —1(:;c — 7), ory = — + 7.
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2 (14+e77)(0) —2(~e™™) 2e™"
47. (a = = - = X b 3
( )y 1+e_z Yy (1 o e_m)Z (1+e_x)2 ( )
2¢° 2(1) 2 1
At(0,1),y = = e ©1)
( ) Yy (1+€0)2 (1+1)2 22 2
-3 3
So an equation of the tangent lineisy-- 1= 1(z —0) ory = 3z -+ 1. L J
-15
_ p2
©. @ fz) =% o
oy < 231 ) - VIF () VI
"= z? V1-—2? i
_ -0 -1
T2 Vi-2 2V1-a?

Notice that all tangents to the

graph of f have negative slopes
and f'(z) < 0 always.

51. For the tangent line to be horizontal, f'(z) = 0. f(z) = 2sinz +sin’z =
f(xz) =2cosz +2sinzcosz =0 <& 2cosz (1+sinx)=0 < cosz=0orsinz = —1,s0
z =% +2nmwor 37" + 2nm, where n is any integer. Now f(g) = 3 and f(%") = —1, so the points on the curve
with a horizontal tangent are (% + 2nm, 3) and (37" + 2nm, ~—1) , where n is any integer.
8. F(z) = f(9(z)) = F'(z)=f"(9(z) g (=),
so F'(3) = f'(g(3)) - ¢'(3) = f'(6) - ¢'(3) = 7- 4 = 28. Notice that we did not use f'(3) = 2.
85. () h(z) = f9(x)) = R'(z)=f(9(z)) g'(x),s0 '(1) = f'(g(1))-9'(1) = f'(2)- 6 =56 = 30.
®) H(z) = g(f(2)) = H'(z)=¢"(f(x)) f'().s0 H'(1)=g"(f(1)) - f(1)=9¢'(3)-4=9-4=36.

57. (a) u(z) = f(g9(z)) = u'(z) = f(9(x))g' (). Sow'(1) = f'(g(1))g'(1) = f'(3)g'(1). To find f'(3), note

that £ is linear from (2, 4) to (6, 3), so its slope is 2 : ;1 = —}11' To find ¢’ (1), note that g is linear from (0, 6)

to (2, 0), so its slope is g g = —3. Thus, f'(3)g’'(1) = (—3)(-3) = 2.

b (@) = g(f(z)) = V() =g (f(@)f (2). Sov'(1) = g'(f(1))f'(1) = ¢'(2)f'(1), which does not exist
since g'(2) does not exist.

© wiz) =g(g(x)) = w'(z)=g'(9(z))g (z). Sow'(1) = g'(9(1))g'(1) = ¢'(3)g'(1). To find ¢'(3), note
that g is linear from (2, 0) to (5, 2), so its slope is z:g = % Thus, g'(3)g'(1) = (3)(=3) = —2.

59. h(z) = f(g(z)) = HK'(z)= f'(g(z))g'(z). Soh'(0.5) = f'(g(0.5))g'(0.5) = f'(0.1)g’(0.5). We can
estimate the derivatives by taking the average of two secant slopes.

o 148126 _184-148 o mitma 22436
For f' (0.1): my = e =22, ma= 5o =36 So f/(0.1) = =T =20,
, 0.10 - 0.17 - 0.05—-0.10 s m1+ ma
Bymy=—— =0T, mg = ——"— =—0.5. 5y~ ———— = —0.6.
For ¢'(0.5): m1 Y 0.7, ma 0605 0.5. So ¢'(0.5) 3 0.6

Hence, 7/ (0.5) = f'(0.1)g'(0.5) = (29)(—0.6) = —17.4.
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63.

65,

67.

69.

n.

7.
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!/ ! x d T ! @ €T
(@) F(z) = f(e") = F'(z)=f(e )E.Tc—(a Y= f'(e)e
®) G@) =e!® = @)=L f(5) = O f(a)

@ f(z) =Lz = f(z)=1L(z*) 42® = (1/z*)- 42® = 4/z forx > 0.

(b) g(z) = L(4z) = ¢'(z)=L'(4z) -4 =(1/(4z)) -4 =1/zforz > 0.

© F(2) = [L()]* = F'(z)=4[L(2)]" L'(z) = 4L(@)]* - (1/z) = 4[L (=)} V=

@) G(z) = L(1/z) = G'(z)=L'(1/z) (-1/2*) = (1/(1/2)) (-1/2*) =z - (~1/a®) = ~1/z
forz > 0.

s(t) = 10 + % sin(10mt) = the velocity after ¢ seconds is

v(t) = §'(t) = 3 cos(10mt)(107) = 3 cos(10nt) cm/s.

. 2x@t dB 2mt 2r\ _ 0.7 2rt _ Tm 27t
(a) B(t) = 4.0+0.35s1nﬂ = = (O.35cos 5.4> ( ) . co

dB Im 2w
Ti-t— = QCOSQ =~ 0.16.

s(t) = 2e"**sin2nt =
v(t) = §'(t) = 2[e™"*(cos 2mt)(27) + (sin 21 )e ™5 (—1.5)] = 2e "% (2 cos 2t — 1.5sin 2nt)

5.4

54 “®54 " 5152

(b) Att =1,

2 15

Graph of Graph of

position 0 TN . velocity 0 /-\ )
A AVainE
-1 -1

(a) Using a calculator or CAS, we obtain the model @ = ab® with a = 100.0124369 and b = 0.000045145933.
We can change this model to one with base e and exponent In b [b* = ¢*'*® from precalculus mathematics or
from Section 7.3): Q = ae*'™® = 100.012437¢~10:005531%,

(b) Use @'(t) = ab® Inb or the calculator command nDeriv (Y;, X, .04) with Y;=ab” to get
Q' (0.04) ~ —670.63 pA. The result of Example 2 in Section 2.1 was —670 pA.

_9\8
(a) Derive gives g'(t) = M— without simplifying. With either Maple or Mathematica, we first get
(2t + 1)10 P
, (t—2)8 (t—2)° N . .
gt)=9 . and the simplification command results in the above expression.

(2t +1)° (2t + 1)107
(b) Derive gives y' = 2(z® — z + 1)°(2z + 1)*(172® + 622 — 9z + 3) without simplifying.
With either Maple or Mathematica, we first get
Y =102z + 1)*(2® —z+ 1) + 42z + 1)°(2® —z + 1)®(32? — 1). If we use Mathematica’s Factor or
Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives the polynomial
expansion instead. For locating horizontal tangents, the factored form is the most helpful.

(a) If f is even, then f(z) = f(—z). Using the Chain Rule to differentiate this equation, we get

(@) = f'(~a) % (~2) = — f'(=z). Thus, f'(~z) = —f'(z), s0 f is odd.
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(b) If f is odd, then f(z) = - f(—=). Differentiating this equation, we get f'(z) = —f'(—z)(~1) = f'(—=z), so
f is even.

71. (a) (—id; (sin™ zcosnz) =n sin™ ! z cosa: cos nx + sin”  (—nsinnz) [Product Rule]

=nsin"" !z (cosnrcosz — sinnz sinz) [factor out n sin™~* )
=nsin™ !z cos(nz + z) [Addition Formula for cosine]
=nsin "'z cos{(n -+ 1)z [factor out z]

(b) di:c (cos™ z cos nx) = ncos™ 'z (—sinz) cosnz + cos” z (—nsinnz) [Product Rule]

= —ncos" ! z (cosnxsinz + sinnz cos ) [factor out —n cos™ ! z]
=—ncos" 1z sin{(nx + z) [Addition Formula for sine]
= —ncos" ! zsin[(n + 1)z] [factor out z]

79. Since 6° = (755 )6 rad, we have Edé (sinf°) = % (sin 1550) = {35 €08 1250 = 155 cos8°.

81. First note that products and differences of polynomials are polynomials and that the derivative of a polynomial is

also a nomi enn = M () == P(z) / = Q) P'(x) — P(2)Q'(x) = A1 () ere
Iso a polynomial. When 1, f*9(x) <Q(a:)> Q@)P [Q(x)]l-i—l’Wh

Ai(z) = Q(z)P'(z) — P(z)Q' (). Suppose the result is true for n = k, where & > 1. Then

*) () = Ax(z) "
F2E) = Qe
£ () = ( Ay (z) ) _ Q@) AL (@) — Avla) - (k + DIQ()* - Q'(x)
(Q(z))*+? {[Q(z)]k+1}2
_ Q@) A (z) — (b + 1)A(2)[Q(2)]* Q' ()
[Q($)12k+2
_ Q@) {[Q@))* Ai(x) — (k + 1) Ax(2)Q' (z)} _ Q(2)Ai(z) — (k+ D A(=)Q'(2)
[Q(x)]*[Q(x)]*+2 [Q(z)]k+2

= Apy1(2)/[Q(@)]"2, where Ari1(z) = Q(z)Ay(z) — (k + 1) Ar(z)Q' ().

‘We have shown that the formula holds for » = 1, and that when it holds for n = k it also holds forn = k + 1.
Thus, by mathematical induction, the formula holds for all positive integers n.

3.6 Implicit Differentiation

d
1. (a)%(a:y+2m+3m2):—;(4) = (z-y+y 1)+2+6x=0 = zy =-y—2-6z =

d
r_—y—2-6z yt2
=27 ory = -6 - L2
Y ory e
4 — - 2
B oy B BB = = ay=4-B5-8 = poe—mSD M 5 g o=t 5
' x x x?
(C)Frompart(a),y,:—y—2—6x:—(4/m—2—3m)—2—6m=—4/1:—33::__4}2__3.
z z z T
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d (1 1 d 11 1 1 y?

—(=z+2)=—(1 — -y = ——y = = -2
@ — (m+y) dw() > Y 0 = 2V = = y g

1 1 1 1 -1 x (x —1)(1) — (x)(1) -1
b - ——:1 —_ = —_— = = — . /: —4 .
()x+y = y ! x x y=p o1 %v (xz—1)2 (x—1)2
@y - Lo _le-1P < 1

x? z? x?(x —1)2 (x —1)2

dz

d d
.a(asz—l—yz):-—(l) = 2x+4+2yy' =0 = 2y =-2z = y’:—g

d
Co (BB 2ty + 40 = % 6) = 32+ (2’ +y-2z) +8yy’ =0 = 2%y +8yy =327 —2uy

dz
32 +2wy _ 2(3z+2y)

= (P+8y)y =-32"-2ay = o =

x? +8y 248y
d d
.%(wa—l—wyz):%(Bx) = (2% +y-2)+ (z- 20 +9° 1) =3 =
3 — 2y — ¢
22y 4+ 2zyy =3 - 2zy —y° = y'(m2+2my)=3—2wy—y2 = y’:——a-:—2+y2—$yy
d ; 5 o . d 2 ' 2 I
%( Yy +ms1ny)=ggz(4) = 2.2y +y* -2z +zcosy-y +siny-1=0 =
f— 2_ 1
22%yy’ + weosy -y = —2xy? —siny = (2y+xzcosy)y = —2xy® —siny = y’:%
d . d ’y o .
a;(4cosms1ny):a(l) = 4lcosz-cosy -y +siny- (—sing)] =0 =
dsingsi
y'(4coszcosy) =4dsinzsiny = y' = STl _ tanz tany
4coszcosy

d d
e (e’”Qy) =7 z+y) = "y (@Y +y-22)=1+y = ermzyy’ + 2wyem2y =1+y =
2
2 2 2 2 1—2zxye” Y
22 Vy —y =122y ¥ = ¢ (2% YV —1)=1—-2zye”? = y = oty T

"E——y/+ Y
2./xy 2. /xy

x — 2z? 4y /Ty — dxy \/xy —
_ y,( T m2>:2xy_ v oo y/( \/wy>_ WY Y-y

VEg=1+2%y = 3(oy) "V P(ay +y- 1) =0+2% +y -2z => = 2%y + 2zy

2./zy 2 ./Ty 2./zy T 2. Ty o= z — 222, /Ty
zy =cot(zy) = y+ay = —csc?(ay)(y+ay) = (y+azy)[l+esc’(@y) =0 =

y+xy =0 [since 1 4+ csc?(zy) >0] = ¢ =-—y/z

d% {1+ f(z) + 22 [f (@)} = %(D) = F(a)+2® 3@ F'(2) + [f(@)] 2 = 0.z = 1, we have

d
f/(1)+12'3[f(1)]2-f/(1)+[f]_)]3.2(1):0 = fl(1)+1'3'22'f/(1)+23~2:0 -
FO+12f(1)=—16 = 13f(1)=-16 = f/(1)=-18.
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.

By iyt =yl = 4y3+(m2-2y+y2-2m3—2>+(y-4a:3%+w4-1):1 =

dz 1—4y® — 22%y — o*
dy 2zy? + 43y

dx dz
2wy? == + 4oty — =1—-4y® — 2%y -2* =
dy dy

5. 22 4ay+y> =3 => 2wty +y-1+20 =0 = zy+uy =-20—-y =

—2p — I, .
y(x+2)=-2z2—-y = y':;—iﬁ.Wbenzz1andy=1,wehavey’=f—+—§‘—11=T3=—1,so

an equation of the tangentlineisy — 1 = —1(z — 1) ory = —z + 2.

2. 2* +y? = (20" +2° — ) = 22+ 2y =2(20°+2y° —z)(4z+4dyy — 1). Whenz =Oandy = }, we
have 0+y =2(3)(2y' —1) = ¢ =2y —1 = ¢ =1,s0anequation of the tangent line is

y—3=1z—-0oy=z+3.

29.2(z? +4%)" = 25(2% —y%) = 4(a® +9*) 2z +2yy) = 252z — 2yy') =
Az + yy') (m2 -+ y2) =25(z—yy') = Adyy (ﬂc2 -+ yz) -+ 25yy’ = 25x — 4x (z2 + yz) =

) 25z — 4:1:(302 4 y2)

-3, - _75-120 _ _45 _ _ 9 :
Yy = Pyt A ) Whenz = 3andy = 1, we have ¢’ = 25T 40 = 5 = 13 S0 an equation of the
tangent lineisy — 1 = ——1%(:1: -3 ory=-3z+ 3.
3 —
N )y’ =b2" —2° = 2y =5(42°) —22 = y = el Y (b) 5
Yy
. ;Lo -1_9
So at the point (1,2) we have y’ = 5 = 2,and an e
equation of the tangent lineisy — 2 == §(z — 1) ory = 3z — 3. _2[ / /& J 2
-2
3% — 6z +2
3. (a b)y = = y=-lat

(0,1) and ' = 3 at (0,2).

ﬂ Equations of the tangent lines are y = —x + 1
J

andy = %w+2.

Dy =0 = 3z*—6x+2=0 =
z=1+3V3

.

-3
There are eight points with horizontal tangents:
four at z ~ 1.57735 and four at x ~ 0.42265.
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4
(d) By multiplying the right side of the equation by z — 3, we \
obtain the first graph.
By modifying the equation in other ways, we can generate -2 5
the other graphs. /
=
y(y' - 1)y -2)
=z(z - 1)(z — 2)(z — 3)
4.5
p
- 5
L ) ‘4 _ AR
) 6 3 6
-
\ ——\ -3 -3
=30
y(v* ~4)(y-2) v+ - 1)y ~-2) W+ -1y -2
=z(x— 1)(z —2) =gz —1)(z—-2) =(z~-1)(z—2)
3 4 4
=3 3 5 /\ Pay : —4 4
Ll /
. 1 J \.
-3 -3 )
2(y+1)(y* -1)(y-2) y(y* +1)(y - 2) vy +1)(y* - 2)
=ylz—1)(z—2) =z(r? - 1)(z - 2) =z(z ~ 1)(z® — 2)

35. From Exercise 29, a tangent to the lemniscate will be horizontal if y’ = 0 = 25z — 4z (:z'2 + y2) =0 =
z[26 —4(z* +y*)] =0 = 2®+¢® = 28 (1). (Note that when z is 0, y is also 0, and there is no horizontal
tangent at the origin.) Substituting % for % + y? in the equation of the lemniscate, 2 (z2 + y2) 2= 25(31c2 — y2),
we get 22 — 42 = 22 (2). Solving (1) and (2), we have 2> = L3 and y* = 25, 50 the four points are (:l:%, :I:%).

16°
2 2

2 ! b : :
37. % — %5 =1 a—z - 223 =0 = ¢y = ;,—z— => an equation of the tangent line at (zq, yo) is
Y—yo = bz (z — o). Multiplying both sides by . gives L1 . y_g = m_g. Since (xo, yo) lies on the
a2y0 b2 2 b2 a2 a2

2 2
hyperbola, we have E% _WY %%,
a

b? a? b2
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45,

47.

49,

51.

. If the circle has radius , its equation is % + y? = r

.Lety =cos 'z. Thencosy =zand0 <y <7 = -sinyd
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2 = 242y =0 = y’=*§,sotheslopeofthe

Yo S
= ~—, which is the slope of
~To/yo  Zo pe

tangent line at P(zo, yo) is —5—9. The negative reciprocal of that slope is
0

OP, so the tangent line at P is perpendicular to the radius OP.

. - 1 d _ 1 1..-1/2) _ 1
y=tan"'yz = y—m'%(ﬁ)—m(ix 1/)“2\/5(1+:r:)

.y =sin"!(2z+1) =

, 1 d 1 2 1
=— — (224 1) = 2= -
v V1= (2z+1)2 dav( ) V1 - (422 +4z +1) V—-4z2 -4z /2% -z

1
14 z2

H(z) = (1 +2%) arctanz = H'(z) = (1+2?) + (arctan z)(2z) = 1 + 2z arctan

h(t) = cot™(t) + cot ™1 (1/t) =
d

1 v dr_ ot & /AN 1 1 g
T4+t2  14+(1/t)2 dtt 1+ 241 2/ 1+t #2417

B (t) =

Note that this makes sense because h(t) =: g fort > 0 and h(t) = ~g for ¢t < 0.

2x
1 i (621) _ 2e

— —1/¢_ 2z e . o o
y=cos™(e¥) = y /1_(621)2 dz 1 — et=

f(z) = ¢ — z®arctanz =

_ 2
fi(z) =€” - [a: <1 n wz) + (arctan x)(Zw)] \
2 .
o _ ~
= = 2z arctan x ZL% J3
This is reasonable because the graphs show that f is increasing when f” is —4

positive, and f’ is zero when f has a minimum.

o =
X
dy 1 . — ,_1_ (Note that siny > 0 for 0 < y < .)

a_—Siny:.—\/l—coszy R Y

. 222 + y? = 3and 2 = ¢® intersect when 22° +2~3=0 <« (2z+3)(z—-1)=0 & x=-%orl but

~2 is extraneous since z = y* is nonnegative. Whenz = 1,1 = ¢*

=y = %1, so there are two points of
intersection: (1,+1). 2> +32 =3 = 4zx+2yy’ =0 = ¢ =-2z/yandz=¢> = 1=2yy =
y' = 1/(2y). At (1,1), the slopes are m| = —2(1)/1 = —2 and mz = 1/(2- 1) = 3, so the curves are orthogonal

(since m; and my are negative reciprocals of each other). By symmetry, the curves are also orthogonal at (1, —1).
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51.

59,

61.

63.

65.

67.

o

z? + y? = r? is a circle with center O and ax + by = 0 is a line through O. y

2

?+y’=r" = 20+2yy =0 = 4y = —x/y,so the slope of the tangent

line at Po (o0, yo) is —xo/yo. The slope of the line OF; is yo/xo, which is the

negative reciprocal of —zo/yo. Hence, the curves are orthogonal, and the families

of curves are orthogonal trajectories of each other.

y=cr’ = y =2czxandz®+22P=k = 2uz+4yy =0 = y
; . z z 1
20 = -z = Yy = ——%)— = —W =g so the curves are
X
orthogonal.
To find the points at which the ellipse > — zy + 4? = 3 crosses the z-axis, let y = 0 and solve for z.

y=0 = z*—2(0)+0°=3 < xz=+3. Sothe graph of the ellipse crosses the z-axis at the points
(£+/3,0). Using implicit differentiation to find y', we get 2z — xy/ —y+ 2y’ =0 = y'(2y— T)=y—2z

0-2v3
2(0) — V3

,  yY—2z

B 0+2v3
T 2y—z

2(0) + /3

< Y

. Soy’ at (+/3,0) is =2and ¢ at (—/3,0) is = 2. Thus, the tangent
2

lines at these points are parallel.

i toy=2 = 22 2y +y* 2tz +y-1=0 & V(2% +z) =220 -y &
/ 2zy” +y 2ay” +y 2 2

_ So— =-1 & mlty=2%yt+z o yey+1)=z2zy+1)
y Thte D Gy zy° +y =22y +x y(2zy + 1) = z(2zy + 1)

Yy2xy+1) —zey+1)=0 & QLoy+1)(y—2)=0 & zy=—jory==2Buzy=-} =
2%y Yy = % . % # 2,so wemusthave x = g. Then z®y? +ay =2 = z*+2°=2 &

et +2?-2=0 & (2*+2)(2®— 1) =0.S02? = —2, which is impossible, or 22 = 1 & = *1.
Since & = y, the points on the curve where the tangent line has a slope of —1 are (—1, —1) and (1, 1).

(a) If y = f~*(z), then f(y) = z. Differentiating implicitly with respect to z: and remembering that y is a function

Ofx,wegetf'(y)j_gyc :1,80% :% =N (j!~1)/($): W_ll(m—)j
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®) f4)=5 = f7'(5) =4 Bypart(, (f)(6) = 1/f'(f7'(5) =1/f(4)=1/(3) = 4.
2 +4y =5 = 22+4Q2yy)=0 = y = —zfiy. Now let h be the height of the lamp, and let (a, b) be the

point of tangency of the line passing through the points (3, k) and (—5, 0). This line has slope

(h —0)/[3 — (—5)] = $h. But the slope of the tangent line through the point (a, b) can be expressed as 3’ = ~%,
b—0 b a b

- ! . _ g _e _
o= (5 a+5 [since the line passes through (—5,0) and (a, b)], so T

4* = —a> -5a < a?+ 4b® = —Ba. Buta® 4 4b% = 5 [since (a, b) is on the ellipse], s0 5 = —5a <

or as

a=—1.Then4b®> = —a® —5a = -1 —-5(-1) =4 = b= 1, since the point is on the top half of the ellipse.

So g = a 3_ 5 e ~11+ 5 - i => h == 2. So the lamp is located 2 units above the z-axis.

3.7 Higher Derivatives

1.

1.

13.

15.

17.

a=f,b=f,c= f". We can see this because where a has a horizontal tangent, b = 0, and where b has a
horizontal tangent, c = 0. We can immediately see that ¢ can be neither f nor f’, since at the points where c has a
horizontal tangent, neither a nor b is equal to 0.

. We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal

tangent, neither ¢ nor b is equal to 0. Next, we note that ¢ = 0 at the point where b has a horizontal tangent, so b
must be the graph of the velocity function, and hence, b’ = a. We conclude that c is the graph of the position
function.

Cfx) =2 +622 —Tz = fl(x)=5s"+122—-7 = f’(z)=202°+ 12
.y=cos20 = ¢ =-2sin20 = y"’ = -4cos26
LF(t) = (1-T7)° = F(t) =6(1—7t)°(=7) = —42(1 - 7t)* =

F'(t) = —42 - 5(1 — 7t)*(—7) = 1470(1 — 7¢)*

1-4u oo (A43w(-4) —(1—4uw)@B)  —4-12u—3+12u T
Mw =133, = MW= (1 + 3u)? = 1+ 3u)? T tsuz
~7(1+3u)"% = () = -7(-2)(1 +3u)"3(3) =42(1 +3u)™® or (1—:?—23:—10_3
h@) = VT3 = W(z)=3(a*+ 1)7/3(20) = =
, Vez+1l-1—z [%(x2+1)‘1/2(2x)] (cc2+1)_1/2 [ +1) — 2?] 1
= (VaZ+1)° B (@ +1)! T @+ 1)

y= (:E3 + 1)2/3 = y/ — g(ms + 1)_.1/3 (3x2) — 2.’1:2(923 + 1)—1/3 =
v =227 (—3) (@ + 1)7V3(32%) + (2" + 1) 73 (42) = da(a® + 1)V - 2% (2 + 1)7°
H(t) = tan3t = H'(t) = 3sec’®3t =

H"(t) =2 3sec3t % (sec 3t) = 6sec 3t (3sec 3t tan 3t) = 18 sec” 3t tan 3t
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g(t) =t3" = g(t)=1te" 54" 3> =t?e"(5t +3) =
g”( ) = (2t)e (5¢ + 3) + t* (5e°*) (5t + 3) + t?e%(5)
% [2(bt + 3) + 5t(5¢t + 3) + 5t] = =" (25¢* + 30t + 6)

21. (2) f(z) = 2cosz +sin’z = f'(z) = 2(--sinx) + 2sinz (cosx) = sin2z — 2sinz =

" (x) = 2cos 2z ~ 2 cosz = 2(cos 2z — cos T)

(b) 4 We can see that our answers are plausible, since f has horizontal
', \ ‘/\‘ " .
[ 'l ! ‘.f tangents where f'(z) = 0, and f’ has horizontal tangents where
! /Jp ) i i) =
i 1 h ‘|
U |‘ 1 \

"
B)
——
Pt
%
<
(N
(33
3

—2.5

B.y=12c+3=02c+3)"? = ¢ = %(21-_;_3)—1/2 2= 0r+3)"Y?2 =
"= _1(21" + 3)_3/2 2=—-(2z+ 3)_3/2 = ¢y = %(233 + 3)—5/2 -2 =3(2z + 3)«5/2

Yy
25, f(t) =tcost = f/(t)=t(—sint) +cost-1 = f’(t) =t(—cost)—sint-1—sint =
f"(t) =tsint — cost-1 —cost —cost = tsint — 3cost,so f/(0)=0-3=-3.
21. f(0) =cot§ = f(0)=—csc®0 = f"(0)=—2csch(—cschcotf) =2csc®fcotf =
F1(0) = ( 2csc? O cot ) cot O + 2csc? 6 (-- csc® ) = —2csc® 0 (2cot® § +csc? ) =
(%) = —2(2)* [2(v3) + (%] = -80
2. 927+ =9 = 18z +2yy/ =0 = 2y =-182 = ¢ =-9z/y =
iy — /
"=_-9 (gl—?fi—g—):_9< :c( 9z, y)) -9. y +9x :——9-% [since x and y must satisfy
the original equation, 9z + y* = 9. Thus y' == 81/y
N+yPP=1 = 322+3% =0 = y—_y_2 =
Y = w3/2(237:) — % 2yy _ _2my2 — 227y (—a%/y?) _ _2my4+2x4y _ _2xy(y3—|—a:3) _ 2
(y2)? yt y° y° y*’

since # and y must satisfy the original equation, * + 3* = 1.

B flz)=2" = f(x)=nz"! = f@i=nn-1)"?% = ... =
f<")(w) =nn—1)(n-2)---2.1z"" =mnl

3. flz) =€ = fl(z)=2e" = f'(z)==2-2" =2%" =

f”’(a:) — 22 . 2623: — 23€2z = ... o= f(n)(x) — 2n62z
3. flz) = 1/(3z%) = %m_?’ = f'(z) = %(——3‘)1’"4 = f'(z)= %(—3)(—4).10"5 =
£@) = BB > =
" . gy (= Bl o8 e n+2) 2 (=" (n+2)
(@) = 334 [+ D)o < (3B o kD) 2 (1D

39. Let f(x) = cosz. Then Df(2z) = 2f'(2z), D*f(2x) = 22 f"(2z), D f(2z) = 23" (22), ...,
D™ f(2z) = 2" §(™)(2z). Since the derivatives of cos 2 occur in a cycle of four, and since 103 = 4(25) + 3, we

have £199)(z) = f® (z) = sinz and D2 cos 2z = 2103 £(103) (23) = 2103 5in 222,
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#1. By measuring the slope of the graph of s = f(t)att =0, 1, 2, 3, 4, and 5, and using the method of Example 1 in
Section 2.9, we plot the graph of the velocity function v = f'(t) in the first figure. The acceleration when £ = 2 s is

a = f"(2), the slope of the tangent line to the graph of f’ when ¢ = 2. We estimate the slope of this tangent line to

be a(2) = f7(2) = v (2) =~ &L = 9ft/s?. Similar measurements enable us to graph the acceleration function in the
second figure.
v a
4071 v 154
7 10} g
20+
101 3T
o ————— I ————>

B (a)s=2t2—15t>+36t+2 = ov(t)=5(t) =6t*—30t+36 = at)=0'(t)=12t—30
(b) a(1) =12-1 - 30 = —18 m/s?

(c) u(t) = 6(t* — 5t +6) = 6(t —2)(t - 3) = Owhent = 2 or 3and a(2) = 24 — 30 = —6 m/s?,
a(3)=36—-30=6 m/s2.

= a(t)=v(t) = %[— sin(Ft) - = —cos(%t) - &] = 7r—6 [sin(Zt) -+ cos(%t)]
2 W _ 211 /3 2
®) a(1) = -3¢ [sin(%-1) +cos(%-1)] = —g—ﬁ [5 + 7] = —% (1++v3) ~ —0.3745m/s*
(©v(t)=0for0<t<2 = cos(%i) =sin(3t) = 1= sm((?r?)
6
tan(%t) =1 = Zt=tan™'l = t=%2.Z =32 =155 Thus,
2 _ . 213 3 2
a?)= —% [sin(Z-£) +cos(% - §)] = —% [? + 7] = —:—6\/5 ~ —0.3877 m/s%.

41. (@) s(t) =t* — 43 +2 = o{t)=s () =4 - 12t° = at)=0'(t) = 126> ~ 24t = 12t(t —2) =0
whent = 0 or 2.

(b) s(0) =2 m,v(0) =0m/s, 5(2) = - 14 m, v(2) = —16 m/s
49. (a) s= f(t) =3 — 126> +36t,t >0 = w(t) = f'(t) = 3t> — 24t + 36.
a(t) = v'(t) = 6t — 24. a(3) = 6(3) — 24 = —6 (m/s)/s orm/s>.

(c) The particle is speeding up when v and a have the
same sign. This occurs when 2 < ¢ < 4 and when
t > 6. Itis slowing down when v and a have opposite

signs; that is, when 0 <t < 2 and when4 < { < 6.
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51. (@) y(t) = Asinwt = v(t) =y'(t) = Awcoswt = a(t) =v'(t) = —Aw’sinwt
(®) a(t) = —~Aw?sinwt = —w?(Asinwt) = —w?y(t), so a(t) is proportional to y(t).

(c) speed = |v(t)| = Aw |cos wt| is a maximum when cos wt = +1. But when coswt = 1, we have sinwt = 0,
and a(t) = —Aw?sinwt = ~Aw?(0) = 0.

53. Let P(z) = ax® + bz + c. Then P'(z) = 2ax +-band P"(z) = 2a. P"(2) =2 = 2a=2 = a=1
P(2)=3 = 21)2)+b=3 => 4+4b=3 = b=-L

P2)=5 = 127+ (-1)(2)+c=5 = 2+c=5 = c=3.S0P(@)=2>-2+3.

5. y = Asinz + Bcosz = 3y = Acosz— Bsinz = 3’ = —Asinz — Bcosz. Substituting into
y"' +y — 2y =sinz givesus (—34 — B)sinz + (A — 3B) cosz = 1sinz, so we must have —34A — B =1
and A — 3B = 0. Solving for A and B, we add the first equation to three times the second to get B = —-%

10
and A= -2
10°

§.y=¢e" = y =re™ = ¢ =1r%"7 50 .
Y +5y — 6y =12 +5re™ — 6" =€ (r® +5r —6) =€ (r+6)(r—1)=0 =
(r+6)(r—1)=0 = r=1lor—6.

59. f(z) =29(z?) = fl(z)=2x-g'(z?) 2z + g(z?) -1 =g(z?) +22°¢'(z*) =
f(z) = g'(&?) - 22 + 222 - g (2?) - 2z + ¢'(z?) - 4o = 6z g  (x?) + 423" (=?)

B f(@) =9(vE) > Fle)=g(VE) a2 = L2

2V
gy = VS WE) 2 g (VE) 2 e 2 e (VE) ~ ¢ (VE)]
(2vz)? dz
_Vzg'(Vz) —g'(Vz)
dx /T
_ o) = = (2z+1)
8. @ flo) = 577 = '@ o)
() = (2% + 2)*(—2) + 2z + 1)(2)(¢* + z) 2z + 1) _2(3° +32+1)
(22 +2)° (2% +2)°
£z = (z® + m)3(2)(6x +3) — 2(32” + 3z + 1) (3)(=* + m)2(2:1: +1)
B (€2 + 2)°
_ —6(42° +62% + 4z +1)
- (a? +2)*
£ (z) = (z® +2)*(=6) (1202 + 12z + 4) + 6(42® + 622 + 4z + 1) (4) (2? +2)°(2z + 1)
(2 +2)°
_24(5z" +10z° +102® + 5z + 1)
(22 + 2)°
fOa) =7
) f@)= ——— =2 = f@)=-a+@+])? > f(2) =20 —2z+1)° =

wc+1) = z+1
@) = (=3)2zt + @)z +1)* =3 o = fO(2) = (-1)"n [w_(”'m —(z+ 1)_("’”)]
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65. For f(z) = z%€, f'(x) = 2°€” + €”(2z) = €°(2® + 2z). Similarly, we have
['(z) = e*(2® + 4z +2)
f" (z) = e*(2° + 6z + 6)
f®(2) = e"(2? + 8z + 12)
O (a) = e (a® + 10z + 20)

It appears that the coefficient of z in the quadratic term increases by 2 with each differentiation. The pattern for the
constant terms seemstobe 0 =1:0,2=2-1,6 =3-2,12=4-3, 20 = 5 - 4. So areasonable guess is that

f™(z) = e*[2® + 2nz + n(n - 1)].
Proof: Let Sy, be the statement that ™ (z) = €®[2% + 2nz + n (n — 1)].
1. Sy is true because f'(z) = e” (2 + 2x).
2. Assume that Sy, is true; that is, f*(z) = €” [mz + 2kz + k (k — 1)]. Then

FE () = Edg? [ A (a:)] = €"(2z + 2k) + [2® + 2kz + k(k — 1)]e®

=€ [z° + 2k + 2z + (K + k)] = " [2® + 2(k + D)z + (k + 1)k]
This shows that Sky1 is true.
3. Therefore, by mathematical induction, Sy, is true for all n; that is, (™ (z) = €° [#? + 2nz + n(n — 1)] for

every positive integer n.

. dy dydu
s R £ -
67. The Chain Rule says that e T

= du
d*y d (dy d (dydu d (dy\|du dy d (du
20 _ 2y 2 = WL [Prod
&2~ dz (dw = 2o \dudz) " |dz \du )| do T duds \dp ) [FroductRulel
_|d (dy\ du d_u+@@ du +dyd2
T ldu\du) dz| dz " dudz?® du2 dz du dzx?

69. We will show that for each positive integer n, the nth derivative f(™) exists and equals one of f, f', f, f", ...,
F®=1) Since f® = f, the first p derivatives of f ate f', f, f"”, ..., f*~1), and f. In particular, our statement
is true for n = 1. Suppose that k is an integer, k > 1, for which f is k-times differentiable with f (k) in the set
S={f. f, " ..., Ff® V). Since f it p-times differentiable, every member of S [including f¥)]is

differentiable, so f*11) exists and equals the derivative of some member of S. Thus, f**%) is in the set

{5 f7, F7, ..., fP}, which equals S since f® = f. We have shown that the statement is true for n = 1 and
that its truth for n = k implies its truth for n = k + 1. By mathematical induction, the statement is true for all

positive integers n.

3.8 Derivatives of Logarithmic Functions

1. The differentiation formula for logarithmic functions, j (log, z) = z 111@’ is simplest when a = e because
Ine=1.
3. f(8) =In(cosf) = f(0)= L (cosf) = L —tané

cosO d cos 6
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_ _ M)t 8 g -3 3
5. f(@) =logy(1=32) = fl)=rmaris g @ 3) = A3 " Gz )2
5 ’ _ N— d _ 1 1_ 1
1 f(z) = VImz = na)/® = f(z)=1(na) 4/55(11”0)_5(1”)4/5';_533 T
fron 1 , ._1___ 1 Inz 24+Inz
9 f(z)=Vrhz = f(:v)-ﬁ(w)-}-(ln.c) 5va \/_+2\/_ W
n F(t):ln%:ln(2t+1)3—ln(3t—1)4:3ln(2t+1)—41n(3t—1) =
') =3. L g_y4. L g__6 _ 12 ined, - —0(t+3)
FO) =3 537 24 527 3= g1 ~ o o eombined Gy -1y
13.g(m)=lnz_|__i=1n(a~w)—1n(a+z) =
pin —(a+2z)—(a-2) —2a
g(m)— a+m— (a-z)(a+x) ~ a2—2z2?
Inu
Flw) = [1+In(2u)]- L —lnw-5--2  2[1--In(2u) - Inuyl
W = [1 4 In(2u)]? 1+ In2u))?
1+(ln2+lnu) Inu 1+1In2
w[l+nw)]? [l +In(2u)?
Wy=ln|2-c-5° = y=-—T—  (—1-10z) = 2 1 DLl

2—-x— 522

9. y=In(e™ +ze®) =ln(e *(1+2)) =ln(e ) +In(l+2z) = —z+In(l+z) =

- 1 —l—m—l—l T
e 1+
Ny=zlhz = ¢ —m(l/a:) (lnm) 1=1+lhhz = ¢y'=1/z
- = 1 e
By=logpz = v :clnlO (z) = V=ppl"E) T T
z
25f(x)_1_—71(—x——T) =

-1 z—1)[1 —In(z - z
f(x):u—ln(x—l)]-l—w-m_l=( e YmE-1+a
1 —In(z — 1))? [1—In(z—1)]2 (z — 1)1 —In(z — 1))?
2¢—1—(z—1)In(x —1)
(z -1 —In(z— 1)

Dom(f) ={z|z—-1>0 and 1-In(z—1)#40}={z|jz>1 and In(z—-1)#1}
={z|z>1 and z-1#e'}={z|x>1 and z#1+e}=(l,1+e)U(l+e 00)

7. f@) = ln(l—2%) = f(z)=2cln(l—a)+ xj(:if) = 20In(l — 2?) — 12_“’962.
Dom(f) ={z|1-2*>0} ={z|[z| <1} =(-1,1).

y Inz —x(1 Ing -1 , 1-1
B @)= = f@= nm(lna;()z/x)z Six)z = fle)==7=0
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Inz \ x

.y=f(z)=lnlhz = f(z)= ! (l) = flle) = é, $0 an equation of the tangent line at (e, 0) is

1 .
y—O:é(m—e),ory:gx——1,orm—ey=e.

f(z) =sinz +Inz = f'(z) = cosz + 1/x. This is reasonable,

, N
because the graph shows that f increases when f is positive, and ) \A\{// "*\ J

f'(x) = 0 when f has a horizontal tangent. 0 A ¥ .
t + u
A

y=Q2z+1)°%@*-3)° = 1ny:1n((2w+1)5(w4—3)6) =

1 1 1
- 4_ =5 ———— .92 . c4gd
Iny=5n(2z+1)+6ln(z*-3) = yy 5 o + 1 +6 e e A

3 3
y,:y( 0 24f3):(2m+1)5(m4_3)6< 10, 20 )

2z 41 x* 2c+1  z¢-3
[The answer could be simplified to ' = 2(2z + 1)*(z* — 3)5 (29z* + 12z® — 15), but this is unnecessary.]

_ sin® z tan' 2
T @
Iny = In(sinz)? + In(tanz)* — In(z® + 1)2 = Iny=2Inlsinz|+4 lnjtanz| — 2 In(z®> +1) =
1, 2

2y =9. . : : —_
yy 2 sinz CoSEStac tanz o0 ¥ z?24+1

4sec® z 4x >

= lny= ln(sin2 z tan* :1;) — ln(gc2 + 1)2 =

-2r =

; sin? z tan*
NCRIE

2 cot ——
(CO & tanx 241

y=2° = Iny=Inz" = hy=zhz = y/y=z(1/c)+(nz)-1 =
¥ =y{l+lnz) = y =2"1+Inx)

!
. . 1
=z = lhy=mhz** = Ikhy=sinzlhz = Y — (sinz - =+ (Inx)(cosz) =
¢ é Y z

y’:y(smm+lnmcosx> = y ::xSi“”‘(?j—x—l—lnmcosm)
x

Inz

) 1 1
.y=(nz)®* = hy=I(nz)® = hy=zhlhhz = %:a%——-;—l—(lnlnw)‘l =

’ €T ' z 1
- A = of 2 1
Y y(xlnm—l—lnlnm) = ¢y =(lnz) (lnw+ln nm)

!

. 1
Y == €:z'}‘+(lnm)'ez = y/:me e:t(lnw—’__)
y T z

e

y=cx = lhhy=e€e"lnz =

1 d (mg 4 yz) . 2z + 2y

(a2 4 a2 ' 1.3 =
y=In(a®+¢°) = Va2 @ > V="

= 2y + 9%y =22+ 2uy

2x

2 2 — 2 2 /o r
= Y+t -2y =2 = @+ -y =20 = = SR
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8. flz)=lnz-1) = fl@)=1/(z-1)=(-1)" = fla)=—(z—-1)"2 =

ff@)=2z-1)7° = fD2)=-2.3z-1)"* = ... =
n _ n-—1 , —-_n _ n—1 ('I’L . 1)'
f@) = (P24 e - ) = a2
51. If f(x) = In (1 + @), then f'(z) = 1—11—93’ so f/(0) = 1.

m D2 S0 - o) =1,

z—0 -0 xr — O

n(+e) _ . f@) . f@) = £(0)

Thus, lin%)

3.9 Hyperbolic Functions

1. (@) sinh0 = 3 (e” — %) =0 (b) cosh0 = 2(e’+€e) =2(1+1) =1
In 2 —In2 In2 In2\—1 -1 1
. _ ettt PP (el g9t -1 3
3. (a) sinh(In2) = 5 = 5 =—5 = %=
(b) sinh 2 = }(e® — e?) ~ 3.62686
5. (a) sech0 = . =5 1 =1 (b) cosh™ 1 = 0 because cosh0 = 1.
cosh0 1
7. sinh(—z) = %[e‘m - e_(“’”)] =3(e™® —€*) =—1(e" —e™®) = —sinhz

9. coshz + sinhz = %(e“ + e“z) + %(ez _ e_“’) — %(%m) — e

. sinhzcoshy + coshzsinhy = [3(e” —e™) [3(e¥ +e7¥)] + [(e” +e7®)][3(e¥ - e ¥)]
=;[(e"tV eV — ey eTTY) 4 (ePTY — "V ey e~ )]
= 1(2e=tV 2e"9) = 4 [ew+y _ e—(m+y)] = sinh(z + y)

13. Divide both sides of the identity cosh® & — sinh® 2 = 1 by sinh? z:

2 s 12
cosh®*xz  sinh“z 1

Ty . T T T = T3 < coth?z — 1 = esch? z.
sinh“z  sinh*z  sinh®z

15. Putting y = x in the result from Exercise 11, we have

sinh 2z = sinh(z + &) = sinh ¢ coshz + cosh z sinh z = 2sinh  cosh z.
sinh(lnz)  (e""—e™%)/2  z- (e‘”)_l z—g!
cosh(lnz) ~ (elr® +e-1n2)/2 ~ ;4 (elnz)™t 7 4 g1
_z=1l/z (@ -1)jz 2*-1
S z+1l/z T (224 1)/z  x?+1

19. By Exercise 9, (cosh z + sinh z)™ = (e*)" = ™ = coshnz + sinh nz.

17. tanh(lnz) =

21. tanhz = £ > 0,502 > 0. cothz = 1/tanh = sechzzczl—tanhzm:l—(

5
4 b
sechxz = % (since sechz > 0), coshz = 1/sechx =

cschz = 1/sinhz = 2.

g, sinhz = tanhz coshz = 5;— .

e”—e ™ e * . 1l—e™® 10

. . e” —e™® € L& —-1 0-1
® O e = e & e m 1 s orT =

. . . e¥—e
(¢) lim sinhz = lim ———
ZT— 00 00

I
8
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e —e™”®

(d lim sinhz = lim —s = -=00
: . 2
() lim sechz = lim ———— =0
£—00 z—oc0 ¥ 4+ e %
e e . 14e? 140

(f) IILII;Q cothx = zlLl’)go P —- = 111_{130 iTeTz; = m‘ =1 [Or: Use part (a)]

(2) lim+ cothz = lim coths
z—0

- = o0, since sinh z — 0 through positive values and coshz — 1.
s—0+ sinhz

h ; ; .
(h) lim cothz = lim c?s = —00. since sinh z — 0 through negative values and coshz — 1.
20— z—0— sinhz
S . 2
i lim cschz= lim ——— =0
z——00 z——oo ¥ — e~ %

Let y = sinh ™' «. Then sinh y = z and, by Example 1(a), cosh?y —sinh®y =1 = [with coshy > 0]
coshy =+1/1 +sinh? y = v/1 + z2. So by Exercise 9, e =sinhy + coshy =z + V1 +2z2 =
y=In(z+V1+2?).

. inhy (e¥—e¥)/2 e -1
Lety = tanh ™' z. = fanhp e &
(a) Lety an z. Then x anhy coshy ~ (¥ Te9)/2 o~ e 1

ge¥+z=e¥-1 = l14z=¢%—2e¥ = l4+z=¢%¥(1-2z) =

1
62y=1+$ = 2y:ln(ii—z) = y:%ln( +$>.

l—-=x 1—=x

(b) Let y = tanh ™! z. Then z = tanh y. so from Exercise 18 we have

1+tanhy 14z l1+2z 1+x
v — = = y=1 = gy=421 .
¢ 1—tanhy 11—z 4 n(l—:c) v=z2 n(l—m)

dy _
dx —

(since sinh y > 0 for y > 0). Or: Use Formula 4.

(a) Lety = cosh™'z. Thencoshy = randy > 0 = sinhy 1 =

dy 1 1

dz ~ sinhy - /cosh?y —1 T V21

dy 1 1

dy_q, o B

(b) Lety = tanh ™! z. Thentanhy = = sech®y

109

dx
Or: Use Formula 5.
dy _ 1

(c) Lety = csch™ z. Thencschy =z => —cschycothy g—z =1 Iz —m.

By Exercise 13, cothy = &+/csch? y + 1 = £+/22 + 1. If z > 0, then cothy > 0, so cothy = vz2 4- 1.

If z < 0, then cothy < 0, so cothy = —v/z2 + 1. In either case we have
dy 1 _ 1
dz = cschycothy || N

(d) Lety = sech ' z. Thensechy =2 = —sechytanhy Z—z =1 =

dy 1 1 1

- AR = — = — . (Note that y > 0 and so tanhy > 0.
dx sechy tanhy sechy /1 — sech?y zV1—z? ( 4 y>0)
(e)Lety = coth™'z. Thencothy =z = -— csch®y % =1 =

dy 1 1 1 .
Rad AP = = by Exercise 13.
dx csch®y  1—coth’y 1-a2 1

dxr ~ sech2y - 1 —tanh®y 1o
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f(z) =zcoshz = f'(z) ==z (coshz) + (coshz)(z)’ = zsinhz + coshzx

h(z) =sinh(z®) = h'(z) = cosh(z?) - 2z = 2z cosh(z?)
1 —coshz
Gl = 1+ coshz
, (14 coshz) (~sinhz) — (1 — coshz) (sinh z)
G'(z) = 2
(1 4 coshz)
_ —sinhz —sinhzcoshz —sinhz +sinhzcoshz ~ —2sinhz
(1 + coshz)? (1 + coshz)?
= coth VI T 2 ) = — csch® VT TE - 1 (14 2) V2 (21) = LSRNVIHE
h(t) = cothv1+t> = R(t)=—csch® V1 +2-3(1+¢3)" /*(2t) = vy
H(t) = tanh(e') = H'(t) = sech?(e?) - e’ =: e’ sech?(e?)
y:ecosh3a: = yl =ecosh3m -sinh3x-3=36°°5h3’” sinh 3z
Ly=tanhVE 5 Y = e e L
1-(vz)® 2 2/z(1 - z)
y = zsinh™*(z/3) ~ /9 + 22 = _
L 1/3 2z . 1(Z x T T
/o h1_33+ _ e = ginbLf =) + _ —sinh~1(Z
L (3> w\/1+(m/3)2 2+/9 + z2 St (3) VO+z2 /9422 st (3)
1 2z 1
= th_l 2+1 = I = = —-
ymem Ve M T R PNV G

(a) y = 20 cosh(z/20) — 15 =y’ = 20sinh(:t/20) - 55 = sinh(z/20). Since the right pole is positioned at
@ =17, we have y//(7) = sinh 55 ~ 0.3572.
(b) If « is the angle between the tangent line and the z-axis, then tan o = slope of the line = sinh 570-, N

o = tan™' (sinh 5% ) ~ 0.343 rad ~ 19.66°. Thus, the angle between the line and the pole is
6 =90° —a ~ 70.34°.

(a) y = Asinhmz + Bcoshmz = y' = mAcoshmz +mBsinhmz =
y” = m? Asinhmz + m? B coshmz = m?(A sinhmz + B coshmz) = m?y

(b) From part (a), a solution of ¥ = 9y is y(z) = Asinh 3z + B cosh 3z. So
—4 = y(0) = Asinh0+ Bcosh0 = B,so B = —4. Now y/(z) = 3Acosh 3z — 12sinh 3z =
6=19'(0)=34 = A=2,s50y=2sinh3:c —4cosh3z.

. The tangent to y = cosh z has slope 1 when y =sinhz =1 = z=sinh™'1=In(1+ +/2), by Equation 3.

Since sinh = 1 and y = coshz = 1/1 + sinh® z. we have cosh z = v/2. The pointis (In(1 + v/2),v2).
If ae® + be™® = accosh(z + ) [or asinh(z + )], then
ae® +be ™" =g (e"P £ e P) = (e’ L e e P) = (2e)e” £ (ZeF)e™. Comparing coefficients

of €” and e~ %, we have ¢ = %eﬁ (1)and b = :I:%e‘ﬂ (2). We need to find o and 3. Dividing equation (1) by



equation (2) gives us % = +e?f

. 2a
for ¢® gives us e =" andef = :i:— SO —
a

() If % > 0, we use the -+ sign and obtain a cosh function, whereas if 2

sinh function.

SECTION3.10 RELATEDRATES U 1M

= (x) =In(+%) = B =3%In(+£$). Solving equations (1) and (2)
= —:l:— = o =4dab = o=2v*ab

2b’ 2b

b < 0, we use the — sign and obtain a

In summary, if @ and b have the same sign, we have ae” +be™* = 2viab cosh(a: + % In %), whereas, if ¢ and b

have the opposite sign, then ae® + be™" =: 2+/—ab sinh(:c + % 1n(—%

3.10 Related Rates

))-

AV dVdz _
1. V=g
v dt T dedt
dy _dydz
— 3
y=2"4+2z = W dndi
dz
22 = g2 2 9,2
5 2 4y = zZ o =
2 =54+122 = Z2=169

2 do
dt
= (322 + 2)(5) = 5(32® +2). Whenz = 2, -‘% = 5(14) = 70.
dx dy dz _1( dz dy _ _
dt+2ydt = i ( +y dt).Whena:—5andy—12,

dz
' dt :l:13

dy
dt

o =413 For Z —9and ¥ ig

= (5-2+12.3) =

7. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over a radar
station. If we let ¢ be time (in hours) and « be the horizontal distance traveled by the plane (in mi), then we are
given that dz/dt = 500 mi/h.

(b) Unknown: the rate at which the distance from the plane to the station is
increasing when it is 2 mi from the station. If we let y be the distance from

the plane to the station, then we want to find dy/dt when y = 2 mi.
(d) By the Pythagorean Theorem, y* = z° +1 = 2y(dy/dt) = 2z(dw/dt).

dy

iy gds
dt

— = L2(500) = 4
5 di 3 (500) = 250 v/3 ~ 433 mi/h.

(e) ——y—(500) Since y* = 2 + 1, when y = 2, z = /3, 0o

dt

9. (a) Given: a man 6 ft tall walks away frora a street light mounted on a 15-ft-tall pole at a rate of 5 ft/s. If we let ¢ be
time (in s) and « be the distance from the pole to the man (in ft), then we are given that dz/dt = 5 ft/s.

(b) Unknown: the rate at which the tip of his shadow is moving when he is ()
40 ft from the pole. If we let y be the distance from the man to the tip of 9
his shadow (in ft), then we want to find (—;i; (z +y) when z = 40 ft. 6
! - 5
(d) By similar triangles, B - ” = 1by=6z-+6y = 9y=6z = y= 3z
(e) The tip of the shadow moves at a rate of i(w +y)=—(z-3z) = 2E8_ 3(5) = 2 ft/s
dt dt 3 3dt 3



We are given that %— =6

Zz@—Zm——I—Z - = 2 =Tty = =
dt z
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0 mi/h and % =25mi/h. 22 =2® +¢* =

_|._

dz dy dz dx dy dz 1 d:z: dy
dt dt

dt dt dt dt dt dt

After 2 hours, z = 2 (60) = 120 and y = 2(25) = 50 = z = /1202 + 502 = 130,

dz
dt

SO

112
1. Y
z X
13. T
X
x+y
P
15. A=

Using the Product Rule, we have ——

100 = 3b(10)

db _ 4-20
dt 10

17.

19. 2

500

1 de . dy\ _ 120(60)+50(25) _
“z<mdt+ydf) 130 /b.

We are given that de _ 4 ft/s and % =5ft/s. 2% = (x +y)* +500° =

dt
dt dt ' dt
x = (4 t/s)(20 1rin) (60 s/min) = 4800 ftand y == 5 - 15- 60 = 4500 =
= +/(4800 + 4500)2 + 5002 = /86,740,000, so

dz _ m+y(_cl_ac @) B 4800+4500(4+5)_ 837
dt 2z \dt ' dt) /36,740,000 /8674

2z L 2(z + )(dm + @> 15 minutes after the woman starts, we have

~ 8.99 ft/s.

%bh, where b is the base and h is the altitude. We are given that % =1 cm/min and 4 = 2 cm? /min.

dt

dA dh db
dt dt

o +h —) When h = 10 and A = 100, we have

db db

= %ble = b:20,so2-§<20 1—10(—1—-> = 4=20+10— =

dt

-1.6 cm/min.

==
l——o—]

We are given that 9z _ g5 km/h and % = 25km/h. 2 = (z +y)* + 100

dt

s G5t ol ) dm + B A4:00 pM., z = 4(35) = 140 and
dt dt
=4(25) =100 = 2z = /(140 + 100)2 4 100? = /67,600 = 260, so

dz x4y 140 + 100 720

- —_ —_——_— 2 = —— R v h.

( ) 760 (354 25) 3 55.4 km/
; . . dv
If C' = the rate at which water is pumped in, then i C — 10,000, where
V= %m"zh is the volume at time ¢. By similar triangles, g = % =
R 2 w13 dv. ., dh

When h = 200 cmn, C;h

C = 10,000 + 200090 7 ~ 289,253 cm®/min.

= 20 cm/min, so C' — 10,000 = Z(200)*(20) =
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21. 025 03 025 The figure is labeled in meters. The area A of a trapezoid is
\ aj —;— (basey + basez )(height), and the volume V' of the 10-meter-long trough is
0.5
h 10A. Thus, the volume of the trapezoid with height A is
0.3

V = (10)3 [0.3 + (0.3 + 2a)] h. By similar triangles, % = %‘25—5 = % s0

dV  dV dh dh
= o — 2 o — =
2a=h = V=506+hh=3h+5r%Now 2o = 2222 = 02=(3+100)F =
dh 0.2 dh 0.2 _ 02 1 10
& = 3ri0n Ve h=08 = 300, ~ 6 /M = 3g m/minor - cm/min
v . 2p_ 1 (h e O
23 We are given that — = 30 ft*/min. V = 3rr’h = 3n( 5 ) h=—
at 2 12
av _ dV dh wh? dh dh 120
& =ama © P T T w e N
dh 120 6 :
= -l —_——= = — ] . .
h =10ft, 7 05w = B 0.38 ft/min
1 ; h .
25. A:Ebh,butb=5mandsmt9zz = h =4sinf,so
; do
A = £(5)(4sin6) = 10sin 6. We are given — = 0.06 rad/s, so
5 dA  dAde .
Tl i (10c0s9)(0.06) = 0.6 cosf. When § = %,
dA

’ = 0.6(cos §) = (0.6)(3) = 0.3 m%s.

21. Differentiating both sides of PV = C with respect to ¢ and using the Product Rule gives us P av + ng =0

dt dt
av. _ VdpP , dP v 600
- P a . When V = 600, P = 150 and — e = 20, so we have 7 = 150 ——(20) = —80. Thus, the
volume is decreasing at a rate of 80 cm®/min.
1 1 1 1 180 9 400 . ..
29. With R; = 80 and R, = 100, — R R1 + —]%; =30 + 100 = 2000 = 200° so R= 5 Differentiating
. . + s with respect to ¢, we have — 1d 1 de . dR2 =
E R R = YTRa T TR &t R dt
dR of 1 dR: 1 dR3
sl ——= . When Ry = 80 and Rz = 100,
dt R(R?dt+R2dt) S R
dR _ 400 107
— 0. 2)| = — ~0.132 Q/s.
at ~ 92 [802( ) 1002 1007 & )] 810 &
. dx . T .
3. We are given that T 2 ft/s.sinf = 0 T %= 10sinf =
dz de iy T df
" s = 10cos Hd— When 6 = Z = 10cos 13
@ 2 = ﬁ rad/s.

# ")
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33. (a) By the Pythagorean Theorem, 4000% + y* = £2. Differentiating with respect
y y to t, we obtain 2y % =20 Cﬁlf ‘We know that % = 600 ft/s, so when
= y = 3000 ft, £ = /2000 + 30007 = /25,000,000 = 5000 ft and
% = %% 2383 (600) = @9 = 360 ft/s.
(b)Heretan&—Zo—Oﬁ = (tan ) = 2(4500) = sec Gz—z—ﬁ% = %:%%.

dy 4000 _ 4000 _ 4
When y = 3000 ft, — It = 600 ft/s, £ = 5000 and cos § = 7 T %000 " & SO

6 _ (4/5)° -
% = 4000 (600) = 0.096 rad/s.
35. We are given that %f— = 300 km/h. By the Law of Cosines,
X
' V=2 +1% - 2(1)(z) cos 120° = z® + 1 — 2c(—3) =2’ +3+1,50
y
dy dr dx dy 2r+1dzx
1 = - — . Aff
2y —= T =2z p + at = it 2y a@t After 1 minute,
z=30=5km = y=v52+5+1=31km =
dy 2(6)+1 1650
= = —~ (300 ~ 296 km/h.
dt 231 (300) = \/31 /

31.

Let the distance between the runner and the friend be £. Then by the Law
£
A\ of Cosines,

00— ¢2 =200 4 100> — 2200 - 100 - cos 6 = 50,000 — 40,000 cos § ().
Differentiating implicitly with respect to ¢, we obtain

2¢ % = —40,000(— sin 9) % Now if D is the distance run when

the angle is € radians, then by the formula for the length of an arc on a circle, s = 8, we have D = 1000, so

0= ﬁ = Z—i = ﬁ Cfi—ltj = 100" To substitute into the expression for Zﬁ we must know sin 6 at the time

when ¢ = 200, which we find from (*): 200 = 50,000 — 40,000cos6 < cosf = 211- =

. Substituting, we get 2(200) — =40 000—4—

sing = /1 (3)? = \/— \/—5(130>

de/dt = T¥15 2 6,78 m/s. Whether the distance between them is increasing or decreasing depends on the
i

direction in which the runner is running.
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3.11 Linear Approximations and Differentials

1. As in Example 1, T(0) = 185, T(10) = 172, T'(20) = 160, and T
1807 T
T'(20) = T(l% — ZO(ZO) = 172_10160 = --1.2 °F/min. -
T(30) ~ T'(20) + T"(20)(30 — 20) ~ 160 — 1.2(10) = 148 °F. 1607
We would expect the temperature of the turkey to get closer to 75 °F 1507 L
as time increases. Since the temperature decreased 13 °F in the first e
10 minutes and 12 °F in the second 10 minutes, we can assume that the 0‘ 1=0 2:0 3=0 t
slopes of the tangent line are increasing through negative values:
—1.3,—1.2,.... Hence, the tangent lines are under the curve and 148 °F
is an underestimate. From the figure, we estimate the slope of the tangent line at ¢ = 20 to be % = —%.

Then the linear approximation becomes T'(30) &~ T'(20) + T"(20) - 10 ~ 160 — 37(10) = 1472 ~ 147.7.

3. Extend the tangent line at the point (2030, 21) to the Z-axis. P 180
Answers will vary based on this approximation—we’ll use 20 H 7
t = 1900 as our ¢-intercept. The linearization is then Percent
aged 65 0l 21
P(t) ~ P(2030) + P'(2030)(t — 2050) and over
s 21 + 25 (t — 2030) ] . B
P(2040) = 21 + £5(2040 — 2030) ~ 222.6% £ 1900 2000 !

P(2050) = 21 + 25(2050 — 2030) ~ 24.2%

These predictions are probably too high since the tangent line lies above the graph at t = 2030.

5 f(z)=2° = f'(z)=3z%s0f(1):=1and f'(1) = 3. Witha = 1, L(z) = f(a) + f'(a}(z — a)
becomes L(z) = f()+ f/()(z—-1)=1+3zx~1) =3z — 2

7. f(z) =cosz = f'(z) = —sinx, s f(%) =0and f'(3) = —1. Thus,

L@ = £(3) + £ (B)e— ) =0-1fe=5) ==+

9. @) =vI—7 = [(z)=5 s 50 f(0) = Land T
Wi S0 1 L
f'(0) = —3. Therefore, !
Vi—z = f(z) = f(0)+ £ (0)(z —0) -4 \ =
=1+ (-3l(z~0)=1-32z L =

S0v0.9=+1—-01~1~-3(0.1)=0.95and
v0.99 = /T = 0.01 ~ 1 — £(0.01) = 0.995.
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1.

13.

15.

172.

18.

21.

23.

25
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f@)=¥T=2=1-2)"" = [(@)=-401-2)" 50
f(0) =1and f'(0) = —3. Thus,

f(z) = f(0) + f'(0)(z — 0) = 1 — 3. We need
N=z-01<1- %:c < YT -z + 0.1, which is true when
—1.204 < z < 0.706.

1 -4
F(z) = —4(1 + 22)~5(2) = (1—;2’7)5 50 £(0) = 1 and f(0) = —8.

Thus, f(z) ~ f(0)+ f'(0)(x —0) =1+ (—8)(z —0) = 1 — 8.
Weneed 1/(1 +2z)* — 0.1 <1 -8z < 1/(1 +2z)* 4+ 0.1, which is true  -008
when —0.045 < z < 0.055.

If y = f(x), then the differential dy is equal to f'(z) dz. y = * + 5z = dy = (42® + 5) dz.
y=zlhzx = dy= (mi —I—ln:v~1> dz = (1 +1Inz)dx

u+1 _ w=11) - (u+1)1) du— =2

= d
y=ouT1 T W w1y R
@y=2+2z = dy=(2z+2)dz
(b) Whenz = 3anddz = ,dy = [2(3) + 2] () = 4.
5
=Vithr = dy=1i(4+52)"? sdz=—==d
@y + 5z y = 5(4+ 52) 5 dx 2\/4_m:c

(b) When z = 0 and dz = 0.04, dy = 2—5’/1(0.04) =2. 5 =5 =0.05

(@ y =tanz = dy=sec’zdx
(b) When ¢ = m/4 and dz = —0.1, dy = [sec(n/4)]* (~0.1) = (\/5)2 (-0.1) = -0.2.

y=xzr=1A0Az=05 = 29.y=6-2%2=-2Az=04 =
Ay = (1.5)% — 12 = 1.25. Ay = (6 —(-1.6)*) — (6 — (—2)?) = 1.44
dy = 2zxdx =2(1)(0.5) =1 dy = —2zdx = —2(—2)(0.4) = 1.6
)
| |
T dy
dy Ay Ay
(LN i
!
y=x? | dx —2.2 [ dx y=6-x*
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33.

35.

37.

39.

a.

43,

45,
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y=flz)=a° = dy=>5z*de. Whenz = 2anddz = 0.001, dy = 5(2)*(0.001) = 0.08, s0
(2.001)° = £(2.001) = f(2) + dy = 32-- 0.08 = 32.08.

2 2
5 dz. When x = 8 and dz = 0.06, dy = 375

(8.06)%/% = f(8.06) ~ f(8) + dy = 4+ 0.02 = 4.02,

y=flx)=2""° = dy= (0.06) = 0.02, s0

y = f(z) = tanz = dy=sec’zdz Whenz = 45° and dz = —1°,
dy = sec? 45°(—m/180) = (v2)” (~7/180) = —7/90, so
tan44° = f(44°) = f(45°) + dy = 1 — m/90 =~ 0.965.

y=f(z)=secx = f'(z)=secw tang,so f(0)=1and f(0)=1-0=0. The linear approximation of f

117

at0is £(0) 4 f'(0)(z — 0) = 1+ 0(=) = 1. Since 0.08 is close to 0, approximating sec 0.08 with 1 is reasonable.

y=f®)=lmz = f'(z)=1/z,50F(1)=0and f'(1) = L. The linear approximation of f at 1 is

FO) + F W)z —1)=0+1(z — 1) =a — 1. Now f(1.05) = In1.05 ~ 1.05 — 1 = 0.05, so the approximation

is reasonable.

(a) If = is the edge length, then V = z° = dV = 3z%dz. When z = 30 and dz = 0.1,
dV = 3(30)2(0.1) = 270, so the maximum possible error in computing the volume of the cube is about

270 cm®. The relative error is calculated by dividing the change in V, AV, by V. We approximate AV
with dV'.

—— ) | T e == 3 —_—= 3 —
Vv v 3 x 30
Percentage error = relative error x 100% = 0.01 x 100% = 1%.
() S = 62> = dS = 12zdz. When r = 30and dz = 0.1, dS = 12(30)(0.1) = 36, so the maximum
possible error in computing the surface: area of the cube is about 36 cm?,

AS dS _ 12zdc  ,dr 2(9'_1> = 0.0086.

2
Relative error = By O S L (0'1> = 0.01.

Relative error = < ¥ = 6a - =2 3

Percentage error = relative error x 100% = 0.006 x 100% = 0.6%.

(a) For a sphere of radius r, the circumfersnce is C = 277 and the surface area is 5 = dnr?, sor = C/(2m) =

S 4n(C/2m) = C?/n = dS = (2/m)CdC. When C = 84 and dC = 0.5, dS = = (34)(0.5)

so the maximum error is about % ~ 27 cm?. Relative error ~ i&_’ = £4/_7r e i ~ 0.012
T S 842 /w84

4 4 4 (CN_C 1, B B
(b V = gmr’ = 3w<2w) =55 = dV= 5507 dC. When C' = 84 and dC = 0.5,
1764

2 179 cm®. The relative error is

. : 176
so the maximum error is about

dv = #(84)2(0.5) -

w2’

v 1764/x*

approximately E e ~ 0.018.

(84)%/(672) ~ 56
@V =mr*h = AV xdV =2nrkdr =2nrhAr
(b) The error is
AV — dV= [x(r + Ar)?h — nr®h] — 2nrh Ar = 7r2h + 2rrh Ar + w(Ar)?h — mr?h — 27rh Ar
= w(Ar)?h

m
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4]. (a) de = kdm:Odzzo
dz

(b) dcu) = %(cu) dr=c¢ du dx = cdu

dx
d du dv du dv
d == = (= == =
©) d(u+v) dm(u—l—fu)dx (d —l—dm)am . da:—f—dxdm du + dv
(d) d(uv) = d(uv)dw- ud—+v@ da:—ud—dac—i—’ud—d:v—udv—l—vdu
dz dx dz dz
Udu udv 'ududac udvda:
uy_ 4 (u de — de g4, _ _de _dg' _ vdu—udv
© d(v) Cdx ( )d:c v? = v? N v?
d
f ny — 2 n _ n—1
) d (z™) dm( Ydz =n2" " de

49. (a) The graph shows that f'(1) = 2,0 L{z) = f(1) + f'(L)(z - 1) =5+ 2(z — 1) = 2z + 3.
£(0.9) = L(0.9) =4.8and f(1.1) ~ L(1.1) = 5.2.
(b) From the graph, we see that f’(z) is positive and decreasing. This means that the slopes of the tangent lines are
positive, but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in
part (a) are too large.

3 Review
CONCEPT CHECK

1. (a) The Power Rule: If  is any real number, then ?} (™) = nz™ . The derivative of a variable base raised to a
x

constant power is the power times the base raisied to the power minus one.

(b) The Constant Multiple Rule: If ¢ is a constant and f is a differentiable function, then % [ef(z)] =c % f(z).
The derivative of a constant times a function is the constant times the derivative of the function.

(c) The Sum Rule: If f and g are both differentiable, then % [f(z)+g(z)] = % Flx) + dia: g(x). The derivative
of a sum of functions is the sum of the derivatives.

(d) The Difference Rule: If f and g are both differentiable, then —-— [ () — g(z)] = El% flz) — dim g(x). The
derivative of a difference of functions is the difference of the derlvatlves.

(€) The Product Rule: If f and g are both differentiable, then —c—ld; [f(2)g(z)] = f(z) % glx) + g(z) % fz).

The derivative of a product of two functions is the first function times the derivative of the second function plus
the second function times the derivative of the first function.

o)) o(z) o= f(z) - f(fc)—g().
() [9(a)]”

The derivative of a quotient of functions is the denominator times the derivative of the numerator minus the

(f) The Quotient Rule: If f and g are both differentiable, then [

numerator times the derivative of the denominator, all divided by the square of the denominator.

(g) The Chain Rule: If f and g are both differenti:ible and F' = f o g is the composite function defined by
F(z) = f(g(z)), then F is differentiable and F” is given by the product F'(z) = f'(g(z))g’ (). The
derivative of a composite function is the derivative of the outer function evaluated at the inner function times the
derivative of the inner function.
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2 @y=2" = ¢y =nz""! byy=¢€ = 9y =¢&
©y=d" = Yy =a"lna dDy=lhz = ¢y =1/z
@y=log,z = vy =1/(zlna) f)y=sinz = 9 =cosz
@y=cosz = 3y =-sinz () y=tanz = gy =sec’z
@y=cscx = 3y =—csczcotz (G)y=secx = 1y =secx tanz
®y=cotz = 3 =—csc’z WOy=sin"tz = ¢y =1IAT—22
my=cos™lz = y'=—1/\/1—_$'~" @my=tan~'z = y’:l/(1+:t:2)
(0) y=sinhz = 9 =coshz () y =coshz = ¢ =sinhz
(Q y=tanhz = 3 =sech’z @My=sinhlz = 3y =1/vV/1+22
)y=cosh™z = o =1//22—1 ®y=tanh 'z = ¢ =1/(1—-z%

. . e
. (a) e is the number such that ’];11'[%)

h

=11
(b) e = lim 1+ 2z)®

(c) The differentiation formula fory = a® [y’ = a®Ina] is simplest when a = e because Ine = 1.

(d) The differentiation formula fory = logg, z [y’ = 1/(zlna)] is simplest when a = e because Ine = 1.

and then solving the resulting equation for 3.

(b) Logarithmic differentiation consists of taking natural logarithms of both sides of an equation y = f(z),
simplifying, differentiating implicitly with respect to z, and then solving the resulting equation for /.

. The second derivative of a function f is the rate of change of the first derivative f'. The third derivative is the

derivative (rate of change) of the second derivative. If f is the position function of an object, f is its velocity

function, f” is its acceleration function, and f" is its jerk function.

. () The linearization L of f atz = ais L(z) = f(a) + f'(a)(z — a).

(b) If y = f(x), then the differential dy is given by dy = f'(z) dz.
(c) See Figure 6 in Section 3.11.

. True. — (tan®z) =2 tanz sec® z, and % (sec® z) =2 secz (secz tanz) = 2 tanz sec” z.

119

. (a) Implicit differentiation consists of diffcrentiating both sides of an equation involving = and y with respect to z,

TRUE-FALSE QUIZ

. True. This is the Sum Rule.
. True. This is the Chain Rule.

. False. f(\/_) _fWE) by the Chain Rule.

W

. False. ° 10° = 10°1n10
dz

d 2

dz
True. g(z)=2° = ¢'(z) =5z = ¢'(2) =5(2)* = 80, and by the definition of the derivative,
0 =92) _ ) 50

5

z——02
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13. False. A tangent line to the parabola y =  has slope dy/dz = 2, so at (—2, 4) the slope of the tangent is
2(—2) = —4 and an equation of the tangent line is y — 4 = —4(z + 2). [The given equation,

y — 4 = 2z(z + 2), is not even linear!]

EXERCISES

1.y=(m4—3332+5)3 =
y' =3(z* - 32° +5)° % (z* - 3”4 5) = 3(z* — 82% + 5)" (42° — 6z) = 6 (a* — 32® +5)°(22° — 3)
1 _ i _ 1 4
3.y= w:xl/zﬁ-m 4/3 = y—% 1/2—%.’11 7/322 _3\3/x—7

5. y=2zvz24+1 =
y =2z 3(z?+1)" Y2 (2z) + Va2 ¥ 1(2) =

2 2 2 2
PP v +2(z® +1)  2(2z° +1)

¢—+ VEil | Ve il

Ty=em2 = o —¢sin? die (sin26) = €% *?(cos 26)(2) = 2 cos 20 €*?°

3 (A=W -=2) 1- 427 241
1-¢2 & (1— t2)? -7  (1-2)

My=zge® = y =ze/*(1/2®) +e/° 1=e"1*(1/z +1)

l—-z

1
W—_;)H)?—a =

d
—(z+3y) = z- 4% +y* - 1+2° Y +y-2e=1+3 =

13. y=tany1—2z = y’:(sec%/l—m)(

a4 2y
15. dw(zy +z y)—

dx
1-gy* —2xy
! 3 2 _ U . -
Y (4xy +z 3) 1—y ry =y ——4:1:3/3 T2 -3
sec 20
Wy= 1+ tan 20
,_ (14 tan20)(sec 20 tan 26 - 2) — (sec26)(sec® 20 -2)  2sec26 [(1 + tan 20) tan 20 — sec? 26]
v= (11 tan26)? - (1 + tan 26)2
_ 2sec 26 (tan 20 + tan® 20 — sec? 26) _ 2sec2f (tan26 — 1) 1+ tan? 2 = sec? 2]
(14 tan26)? (1 + tan26)?

19. y = e““(csinz —cosz) =
Yy = e“*(ccosz +sinz) + ce®®(csinx — cos x)

=e*(c?sinz — ccosz + ccosz + sinz) = e (c*sinz + sinz) = e“sinz (c2 +1)

Ny=e" = y'zee”%( et = ente”

By=01-z7H" =
=-11-27) [~ (-1z7)] = -1 - 1/z) 27" = —((z ~ D/2) *2™? = (2~ 1)~°
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1 d 2
27. = 1 2 N LSO 1 2 e
y=logs(1+22) = ¥ = s @ O ) = Gy ms
29. y =Insinz — %sinzm = o = snz cosx — % -2sinz - cosxz =cotz —sinzcosx
Ny=ztan™'(4z) = ¢ ==z- S -4+tan"'(4z) -1 = A + tan™!(4z)
) 1+ (42)? 14 1622
33. y = In|sec5z + tanbz| =
5sec 5z (tan 5z + sec 5z)
L P 2 . = —
Y = 5iEr T tansa (sec 5z tan bz - 5 4 sec” 5z - 5) 5oc 52 + tan ba 5 sec bz
35. y =cot(32 +5) = ¢ =—csc®(32° +5)(6z) = —6z csc? (32 + 5)
3. y =sin(tanv1+2%) = 3 =cos(tanv/1+a3)(sec® VI +a3)[32*/(2vT+23)]
39. y = tan®(sin@) = [tan(sinf))]° = y = 2[tan(sin6)] - sec?(sin 6) - cos &
vz +1(2 - z)° 1
Ly =YET Y =1 -
an. y @197 = hy=sn(z+1)4+5In(2—-2z) - 7In(z+3) =
, . JEDRY-
vy _ 1 + 5 7 N y,:\/w—l—l(Z z) 1 5 7 oF
y 2{z+1) 2—-z =z+3 (x+3)7 20x+1) 2-z z+3
, _ (2—=)*(32® — 55z — 52)
g 2vz+ 1(z + 3)8
8. y = zsinh(z®) = 3’ = zcosh(z?) - 2z + sinh(2?) - 1 = 22° cosh(z?) + sinh(z?)
45. y = In(cosh3z) = y' = (1/cosh3z)(sinh3z)(3) = 3tanh 3z
4. y = cosh™'(sinhz) = ¥ = : -coshz = o CohE
4/ (sinh z)2 — 1 Vsinh®z — 1
9. fit)=vE+1 = f@t)=3i4t+1)""2 4=24t+1)"2 =
FlE)=2(—3)(4t+1)7%2 4= —4/(dt +1)*/% 50 f7(2) = —4/9%/ = - &,
5.2+ %=1 = 62°+6)°' =0 = ¢ =-2°/4° =
. _y5(5m4) — o (5y'y) _5w4y* [y—a(—2/y")] _5:104 [(4° +2°)/3°] st
. ) - yt B v Ty
5§3. We first show itis true forn = 1: f(z) = ze® = f'(z) = ze” + €° = (x + 1)e®. We now assume it is true

CHAPTER3 REVIEW D

sin(zy) =2 —y = cos(zy)(zy' +y-1)=22—y = xzcos(zy)y +y =2z —ycos(zy) =

2z — ycos(zy)

Y[z cos(zy) + 1] = 2z — ycos(zy) = ¢ = zoos(@y) + 1

forn = k: f®(z) = (¢ + k)e”. With this assumption, we must show it is true for n. = k + 1:
d
FEHD () = d—di [ f<k>(w)] = @+ e = @@+ ke +e* = [@+ k) +1e” = [0+ (k + 1)]e”.

Therefore, f(™(z) = (z + n)e® by mathematical induction.

121
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85, y =4sinz = y =4 2sinwcosz. At (5,1),y =8 1.8 = 2./3,50 an equation of the tangent line is

y—1=2v3(z— %), ory =232+ 1-73/3.

2cosx 2
5. y=+/1+4sinz = ¢ = 3(1+4sinx) ¥? dcost = ———ee. At (0,1),y' = —= = 2,50 an
y=v v =3l ) Visians O =7

equation of the tangent lineis y — 1 = 2(z — 0), ory = 2z + 1.

5. y=02+z)" = y=02+z)(-e ")+ 1l=e"[-(2+2)+1] =e(~z —1). At(0,2),
y’ = 1(—1) = —1, s0 an equation of the tangent lineisy — 2 = —1(z — 0), ory = —x + 2.

61. (@) f(z)=2z+/5-2 =
f(a:)—x[%( —x)‘l"2(—1)]+\/————: __+\/E>T ;\/——H

-z +2(5—a:)_—$+10—2.’1:_ 10 - 3z
25—z 25 —«x 25 - 25 —x

(b) At (1,2): f'(1) = I. So an equation of the tangent lineisy — 2= Z(z — 1) ory = Iz + i.

At (4,4): f'(4) = ~2 = —1. So an equation of the tangent lineisy — 4 = —1(z — 4) ory = -z + 8.
(© 10 (d) 45

( (4,4) ] P
1.2) '
-10 10 e !
-1~ 4.5
/R Lf N

—10 -2.5

The graphs look reasonable, since f is positive where f has tangents

with positive slope, and f’ is negative where f has tangents with

negative slope.

63. y =sinz+cosz = ¢y =coszr—sinz=0 & cosz=sinzand0<z <21 & m:%oriﬂ,sothe

points are (%\/ﬁ) and (2F, —\/5)

65 f(z) =(zx—a)(z—b)(z—c) = fx)=(@-b(z—c)+(z~a)z—c)+(z—a)(z—Db).So

f’(ac):(:c—b)(:v—c)+(m—a)(m—c)+(m~—a)(w—-b): 1 n 1 n 1 .
f(z) (z —a)(z - b)(z—¢) r—a z-b z-c
Or: f(z)=(z—a)(z—-b)(x—c) = h|f(x)=lnjz—a|+nlz-bl+Injz—¢ =
f@__1 . 1 . 1

flz) z—a z-b z-—c
67. (a) h(z) = f(z)g(x) = K(z) = f(2)d'(z) - g(a)f'(x) =
W(2) = F(2)9'(2) + 927 (2) = (B)(&) + (5)(~2) =12 - 10 = 2
) F(z) = f(g(z)) = F(z)=f(g(z)g'(x) = F(2)=[(9(2)g'?2)=f(6)4)=11-4=4
89. f(z) =2%g(z) = f'(z)=2"(z) +9(x)(22) = x [2g'(z) + 29(2)]

N f(z) =[g(2)* = f(z)=2(g@@)' () =29(z)g'(z)
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B. f(z)=g(e") = [f(x)=g(")e"

B f@) =lnjge) = f(e)= —=g'(@) = L&)

1.

1.

81.

83.

85.

87.

g(z) g()
_ _fla)g(=)
M) = 1) + o)
B (@) = [f(z) + g(2)] [f(2)g' (2) + g(z) f' (2)] — F(z)g(2) [f'(z) + ¢ ()]
[f () + g(z)]?
_[@P ¢ @) + f(@)g@) ' (@) + f(@)g(@)g' () + [9(@)] () — f@)g@)f () — f(z)g(z)g'(z)
[f(2) + g(x)]®

_ S @@ + ' (@) [f(=)]”
[f(@) + g()]*

Using the Chain Rule repeatedly, h(z) = f(g(sindz)) =

W(@) = F'(g(sindz) - - (g(sindz)) = f'(g(sindz) - o (sin s) - <= (sind)
= f'(g(sindz))g’ (sin 4z)(cos 4z)(4)

1 In(z +4)
-1=2
z+4 T +4
z+4=e" = x+4=1 <& x = -3,s0the tangentis horizontal at the point (—3, 0).

y=[n@+4F = v =2ln(@+4) -

andy’' =0 < In(z+4)=0 <

y=flx)=az’+bzx+c = f(z)=2ax+b Weknow that f'(—1) = 6and f'(5) = —2,50 —2a+b =6
and 10a + b = —2. Subtracting the first equation from the second gives 12a = —~8 = a = —%. Substituting

—2 for a in the first equation gives b = 4. Now f(1) =4 = 4=a+b+csoc=4+ 2 =0and

hence, f(z) = —22° + Fa.
s(t) = Ae " cos(wt +6) =

v(t) = §'(t) = A{e™*" [~wsin(wt + 6)] 4- cos(wt + 8)(—ce ™)}
= —Ae ¢ [w sin(wt + 5) + (:cos(wt + 5)] =

aft) = v'(t) = —A{e [w? cos(wt + ) -~ cwsin(wt + 8)] + [wsin(wt + 8) + ccos(wt + 8)](—ce™*)}
= —Ae™**[w? cos(wt + 8) — cwsin(wt + §) — cwsin(wt + 8) - ¢? cos(wt + 6)]
= —Ae % [(w? — ¢?) cos(wt + §) — 2cw sin(wt + 6)]
= Ae™[(c® — w?) cos(wt + §) + 2cwsin(wt + 6)]

@y=t>—12t+3 = ov{t)=¢y =3t>-12 = a(t)='(t) =6t

(b) v(t) = 3(t> —4) > 0 whent > 2, so it moves upward when ¢ > 2 and downward when 0 < t < 2.

(c) Distance upward = y(3) —y(2) = ~6 — (-13) =7,

Distance downward = y(0) — y(2) = & — (—~13) = 16. Total distance = 7 + 16 = 23.
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89.

91.

93.

95.

97.

99.

101.

The linear density p is the rate of change of mass m with respect to length z. m = z(1 + vz ) = z + 2%/? =

p = dm/dx = 1+ §./z, so the linear density when = = 4is 1 + £v/4 = 4 kg/m.

If £ = edge length, then V = 2® = dV/dt = 3z%dz/dt =10 = dz/dt =10/(3z%)and S = 62° =
dS/dt = (12z) dz/dt = 122[10/(3z%)] = 40, z. When z = 30, dS/dt = 23 = % cm? /min.

Given dh/dt = 5 and dz/dt = 15, find dz/dt. 2° = 2> + h®> =

2z§=2x%+2h% = %z%(l&’)w{—t’»h).Whent:B, L z
h=45+3(5)=60andz = 15(3) =45 = 2z = /452 + 602 = 75, s0 X
% = 7= [15(45) + 5(60)] = 13 fi/s.

We are given df/dt = —0.25 rad/h. tan @ = 400/z =

z=400cotfd = COli—::=~400cs<:2t9%.When6?=%, w00

% = —400(2)%(—0.25) = 400 ft/h. Pa— _f___»t

@ f(x) = ¥T+3z=(1+32)"% = f'(z) = (1+3z)"?/5, so the linearization of f ata = 0 is
L(z) = f(0)+ f'(0)(x —0) =13 4+ 1723z = 1 4 2. Thus, YT+ 3z~ 142 =
v1.03 = {/1+3(0.01) = 1 + (0.01) = 1.01.

(b) The linear approximation is ¥/1 + 3z & 1 + z, so for the required

accuracy we want /1 4+ 3z — 0.1 < 1+ z < ¥/1+ 3z + 0.1. From
the graph, it appears that this is true when —0.23 < z < 0.40.

A=z +ir(lz)® = (1+2)e® = dA=(2+2)ede

ESTEY

When & = 60 anddz = 0.1, dA = (2+ 5)60(0.1) = 12+ 3%, so

the maximum error is approximately 12 + 37” ~ 16.7 cm?.

14/ —_—
lim g0l 2= j—% =iar;_3/4 =——1—§:i
h—0 h dz S 2=16  4(/16) 32
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Vi+tanz —+/1+sinz (vl—l-tanm—\/1+Sin$)(\/1+tanw+\/1—I—Sinm)

103. lim = lim
z—0 x8 z—0 z3 (vT+tanz + /1 + sina:)
(1+tanz) — (1 +sinz) . sinz (1/ cosz — 1) cosz

= lim = lim
w—>0w3(\/1+tanm+ 1+sina:) w—>0m3(\/1+tanx+\/1+sina:) cosx

. sinz (1 — cosx) 1+cosz
im .
¢—>0m3(\/1+tanx+ﬁ+sina:)co_sx 1+cosz

- sinz - sin® x
20 23 (/1 + tanz + /1 +sinz ) cosz (1 + cos z)

= (lim sinm) im L
250 X 2—0 (/1 +tanz + /1 +sinz ) cosz (1 4 cosx)

_ 13 1 1

SN VIV e 4

105. d—i— [f2z) =2 = f'(2z)-2=2" = f'(2z)= 3a° Lett=2x. Then f'(t) = %(%t)Q = 3%,

so f'(z) = §2°.

125
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1. Let a be the z-coordinate of (). Since the derivative of y = 1 — 2% is y' = —2a, the slope at @ is —2a. But since
p

the triangle is equilateral, AO/OC = v/3/1, so the slope at Q is —+/3. Therefore, we must have that —2a = -3

2
= g= @ Thus, the point @ has coordinates (\/Tg’ 1- (@) > = (39, i) and by symmetry, P has

coordinates (—%3, %)

3. Lety = tan~' z. Then tany = x, so from the triangle we sec that

sin(tan'l z) =siny = \/—1% . Using this fact we have that 1+ 22
X
inh inh
sin(tan™ " (sinh z)) = = = SU2% _ tanha. Hence,
V/1+sinh® g coshz y

sin~'(tanh z) = sin™? (sin(tan~(sinh:r))) = tan™" (sinh z). 1

.

d
5. We use mathematical induction. Let S,, be the statement that T (sin* x + cos?z) = 4"~ cos(dx + nr/2).

Sy is true because

di (sin4 « + cos” m) =4sin® zcosw — 4cos’ zsinz = 4dsinzcos (sin2 @ — cos’ a:)

T
= —4sinz cosx cos 2z = —2sin 2z cos 2z = — sin 4x = sin(—4x)
=cos(% — (—4x)) = cos(§ + 41:) =4 1 cos(4:v +n%) whenn =1

K

Now assume Sy is true, that is, Tk (sin4 z + cos? m) =41 cos (41: + kg—) Then
dett 4 d [d*
W(sm x + Ccos x):% E;’“— -

(sin4 x + cos* x)} = di [4’“_1 cos(4x + k%)}

= —4*"'sin(4z + k) - d% (4z + k%) = —4"sin(4z + k)

= 4* yin(—dx — kZ) = 4" cos(§ — (—4z ~ kF))
=4* cos(4x + (k+1) z)

which shows that Sg4.1 is true.
T

d . . I Sy .
Therefore, T (sm4 x + cos* m) =4"""cos (4:Jc + ng) for every positive integer n, by mathematical induction.
x

Another proof: First write
sin® ¢ + cos* z = (sin® z + cos? m)2 —2sin®zcos®z =1 — sin?2z =1 — (1 — cosda) = § + § cosdz.
d” 4 4 " 3 1 1 1
a =& (3,1 — 1. gn Ty — g =
Then we have pro (sin*z + cos* z) = e (2 + X cosdx) = ; - 4" cos(4x +nZ%) =4"""cos(4z +n%).

127
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7. We must find a value z¢ such that the normal lincs to the parabola y = z? at z = % intersect at a point one unit

from the points (+o,z). The normals to y = «? at z = £ have slopes — y 213; and pass through (+zo, z§)
0
. ‘ . 1 , 1
respectively, so the normals have the equations y — x5 = o (x —xo)andy — z§ = Sor (z +zo). The
Zo Lo

common y-intercept is 2%+ % We want to find the value of a¢ for which the distance from (0, x3 + %) to (:co, m%)
equals 1. The square of the distance is (zo — 0)° + [x% — (xg + %)]2 =z + ;=1 & zo= :Hg. For these
values of zo, the y-intercept is 3 + 3 = 2, so the center of the circle is at (0, ).
Another solution: Let the center of the circle be (0, a). Then the equation of the circle is 22 + (y — a)® = 1.
Solving with the equation of the parabola, y = z?, we get 22 + (:1:2 - a)2 =1 & 2°+z*—2a2*+a%=1
& z*+ (1 —2a)z® + a® — 1 = 0. The parabola and the circle will be tangent to each other when this quadratic
equation in x> has equal roots; that is, when the discriminant is 0. Thus, (1 — 2a)® — 4(a2 . 1) =0 <
1-4a+4a® -~ 4a®*+4=0 < 4a=05,s00 = 5. The center of the circle is (0, AE
9. We can assume without loss of generality that & =: 0 at time ¢ = 0, so that § = 12x¢ rad. [The angular velocity of
the wheel is 360 rpm = 360 - (27 rad)/(60 s) = 127 rad/s.] Then the position of A as a function of time is
y _ 40sinf  sinf _

A = (40cos 8, 40sin f) = (40 cos 127t, 40sin 127t), so sina = Tem= 120 — 3 = 3 sin 12t
(a) Differentiating the expression for sin «, we get cos o - Z—? = % - 127 - cos 127t = 4m cosb.
i 2
When @ = %, we have sin o = -31-sin€ = ‘/Tgh SO COs ¢ = \ 1-—- (\/Tg) = ,/% and
da  4mcos g 2r 4m/3

= _ = = = 6.56 rad/s.
dt cos V11/12 V11 /

(b) By the Law of Cosines, |AP|* = |0A|* + |OP|* — 2|OA||OP|cosf =
120% = 40% + |OP]? —2-40|OP|cosf = |OP|* — (80cosf)|OP| - 12,800 =0 =

|OP| = %(80 cos + /6400 cos? 6 + 51,200) =40cos8 + 40 /cos2 0 + 8

=40 (cos 0 + /8 + cos? 6) cm (since |OP| > 0)

As a check, note that |OP| = 160 cm when 6 == 0 and |OP| = 80+/2 cm when 6 = .

(c) By part (b), the z-coordinate of P is given by # = 40(cos 6 + v/8 + cos? 6 ), so

dex dxdf 2cosfsind cos @
— = —— =40 —sinf - ————= 1} - 127 = —4807rsinf|{ 1 + ————— ) cm/s.
dt ~ dd dt ( 28 + cos? 0) ( VB + cos? 0) 4

In particular, dz/dt = 0 cm/s when 6 = 0 and dz/dt = —4807 cm/s when 6 = 3.
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m

Consider the statement that Eli_" (e*® sinba:) = r™e*® sin(bx + nb). Forn = 1,

L3 (e*” sinbz) = ae®® sin bx + be®” cos bz, and

dr
re™ sin(bz + 0) = re**[sin bx cos § + cos bz sin 0] = re®” (% sin bx + 2 cos bx)
r
= ae™ sinbx + be®® cos bz

since tan 6 = é = sinf = —IZ and cos ) = 2.
a T r

So the statement is true for n = 1. Assume it is true for n = k. Then

dk+1 aT . d k _ax . k _ax . k _ax
prEy (e** sinbz) = T [r e** sin(bz + kG)] = r"ae® sin(bz + k) + r"e**b cos(bx + kb)

= r*e®®[asin(bx + kB) + b cos(bz + kf))
But

sinfbz + (k + 1)8] = sin[(bx + k6) + 0] = sin(bz + k) cos 6 + sin 6 cos(bx + k0)
a . b
= sin(bx + k0) + p cos(bz + k)

Hence, a sin(bz + k) + bcos(bz + k@) == rsin[bz + (k + 1)6]. So

dk+l

(6 k _awx
dxlc+l

“® sinbx) = r*e®*[asin(bz + k) 4 beos(bx + kO)] = e [rsin(bz + (k + 1)0)]
= "% sin (bx + (k + 1)0)]

Therefore, the statement is true for all n by mathematical induction.

It seems from the figure that as P approaches the point (0, 2) from the right, zr — oo and yr — 2%. As P

129

approaches the point (3, 0) from the left, it appears that z7 — 3™ and yr — 0o. So we guess that z € (3, 00) and

yr € (2,00). It is more difficult to estimate the range of values for zx and yx. We might perhaps guess that

zn € (0,3),and yn € (—o0,0) or (—2,0).

In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation

2 2

2 2 . ]
of the tangent line: % + %— =1 = g + %y’ =0,50y = —%% So at the point (zo, y0) on the ellipse, an
equation of the tangent line is y — yo = —%—mﬁ (z — xo) or dzox + Yyoy = 43 + 9y3. This can be written as
Yo
2
_g:v_ + —% e % + ?JZO = 1, because (20, yo) lies on the ellipse. So an equation of the tangent line is
ToT | Yoy
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is given by

yr takes on all values in (2, 00).

Yy (zo,y0)

. 9
givenby 0 — yo = Z%g(wN — o)

9
yN—y0=Zy0

yn takes on all values in (—3, 0).

15. (a)

Therefore, the x-intercept zr for the tangent line is given by

%:1 & yr = —.

XoxT

9 .
=1 & zr= g and the y-intercept y
0

So as zg takes on all values in (0,3), xr takes on all values in (3, co), and as yo takes on all values in (0, 2),

1

So as o takes on all values in (0, 3), z takes on all values in (0

y

At the point (zo, yo) on the ellipse, the slope of the normal line is

. . 9 . "
, and its equation is y — yo = — LUk (z — zo). So the z-intercept v for the normal line is
0

41170

4
= Iy = ——gg + 20 = é;&, and the y-intercept yx is given by
9 5
= yN:—_%g-}»yO:_%.

5
3

), and as yo takes on all values in (0, 2),
If the two lines L1 and L have slopes mi and mo and angles of
inclination ¢, and ¢,, then m; = tan ¢, and m2 = tan ¢,. The
triangle in the figure shows that ¢, + o 4+ (180° — ¢,) = 180° and so
o = ¢, — ¢,. Therefore, using the identity for tan(xz — y), we have
tan ¢, — tan ¢,
t =t - = ——=———— and
ana = tan(d, — ¢) 11 tan &, tan 6, and so
me — 1y

tan @ = ——.
1+ mime

(b) (i) The parabolas intersect when z* = (z — 2)> = 1z = 1.Ify =z, then y’ = 2z, so the slope of the

17. Since ZROQ = LOQP = 8, the triangle QO R is isosceles, so
|QR| = |RO! = x. By the Law of Cosines, z* = z® — r? — 2rz cos . Hence,

rzcosd =12, 50z =

sin® = y/r), and hence © —

to the z-axis, the point R approaches the midpoint of the radius AO.

tangent toy = 2 at (1,1) is m1 = 2(1) = 2. If y = (2 — 2)?, then ¢/’ = 2(z — 2), so the slope of the

tangent toy = (z — 2)? at (1,1) is ma = 2(1 — 2) = —2. Therefore,

tana =

-2-2

1+mime  1+2(-2)

= £ andso a = tan™'($) ~ 53° (or 127°).

(ii) 2> —y* = 3and 2® — 4o + 3> + 3 = Ointersect when z° — 4z + (2> - 3) +3=0 & 2z(z—-2)=0

= z =0or2, but0isextraneous. If z := 2, theny = +1. If z®> — > = 3then2x — 2y’ =0 =

v =x/yanda® —dz+y*+3=0 = 20-4+2yy =0 = y’=2_Tw.At(2,1)theslopesare

my =2and my = 0, sotana =

mg = 0, so tana =

r
2rcosf  2cos

2

%‘—2.—0 =-2 = a=117°. At(2, —1) the slopes are 1 = —2 and

s=2 = am63° (orll7°).

. Note that as y — 07,8 — 07 (since

0

r .
5 Thus, as P is taken closer and closer
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sin(a + 2z) — 2sin(a + x) + sina

19. lim
z—0 (Ez
. sinacos 2z + cosasin 2z — 2sinacosz — 2cosasinx + sina
- z—0 ;1:2
— lim sina (cos2x — 2cosz + 1) + cosa (sin 2z — 2sin z)
z—0 2

— lm sina(2cos®z — 1 —2cosz + 1) + cosa (2sin z cos z — 2sinz)
_:z:—>0 ;1:2

~ lim sina (2cosz)(cosz — 1) + cosa (2sinz){cosz — 1)
- x—0 1?2

— lim 2(cosx — 1)[sinacosx -+~ cosasin z](cosz + 1)

20 x2(cosz + 1)
_ .2 . . 2 o
- lim 2sin® z [sin(a + z)] - 9l (SEZY . sin(a + m) _p(q)2Sinte+0) sin(a +0) — —sing
250 z2(cosz + 1) z—0\ 2z cosz + 1 cos0+1
21, Let f(x) = €* and g(z) = k+/z (k > 0). From the graphs of f and g,
we see that f will intersect g exactly once when f and g share a tangent
line. Thus, we musthave f = gand f' = ¢’ atz = a. f(a) = gla) =
k
2a __ k 1 d ! S 2 2a _
€ va (1) and f'(a) =g'(a) = 2e 5
2% = Sowemusthavek\/_—i- = (va)’= L =
4\/_ 4+/a 4k
=1 From @), M =k \/1/4 = k=2e/2=2./e~3.207.
sinz
23 y= arctan e —— .Letk =a+ +a? — 1. Then
L va? \/ a++va?2—-1+cosz
1 B 2 1 cos z(k + cos z) + sin® z
g a2—1 +a2—1 1+sin®z/(k+cosz)? (k + cos )2
_ 1 _ 2 .kcosa:—l—cos?:c—l—sinz:z:_ 1 B 2 ' kcosz +1
S VaZ—1 Va2—-1 (k+cosz)2+sin*z  aZ-1 +vaZ—1 k2+2kcosz+1
_k2+2kcos:c+1—2kcosx--2_ K2 -1

VaZ —1(k®+2kcosz+1)  +a? —1(k?+2kcosz +1)

But k* =2a® + 2ava® — 1 —1=2ala++Va®> — 1) — 1 =2ak — 1,50 k* + 1 = 2ak,and
2(ak—1) _ ak —1

Va2 =1 (2ak + 2kcosz)  VaZ — 1k(a+cosz)

ak-1=a’>+ava®—1-1=k+va?-1,50y =1/(a+cosz).

k2 —1=2(ak—1).Soy =

But

% y=2g'—-22° -z = y = 42® — 4r — 1. The equation of the tangent line at z = a is
y— (a* —20® — a) = (4a® —da— 1)(z — a) ory = (4a® — da — 1)z + (—3a* ++ 2a®) and similarly for z = b.
Soif at x = a and z = b we have the same tangent line, then 4a® — 40 — 1 = 4b® — 4b — 1 and
—3a* + 2a® = —3b* + 2b°. The first equation gives @® — 0> =a —b = (a—b)(a® +ab+b?) = (a —b).
Assuming a # b, we have 1 = a® + ab -+ b%. The second equation gives 3(a* — b*) = 2(a? — %) =
3(a® — b*)(a® + b*) = 2(a® — b?) which is true if a = —b. Substituting into 1 = a® + ab + b? gives
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21.

29,
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1=a’-a®*+a® = a==lsothata=1andb= —1 or vice versa. Thus, the points (1, —2) and (—1,0)
have a common tangent line.

As long as there are only two such points, we are done. So we show that these are in fact the only two such

points. Suppose that a® — b # 0. Then 3(a® — b*)(a® +b°) = 2(a® — b”) gives 3(a® + b%) =2 ora® + b = 2

Thus, ab = (a® + ab + b%) — (a® +b%) =1- 2 :%,sob——-i Hence, a —|—ng s09a*+1=6a> =

3a 9z~ 3
0=9a"—6a>+1=(3a>~1)%. 032 ~1=0 = a?=1 = b2=§%:%=a2,contradicﬁngour

assumption that a* # b2.

Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 X 2 grid shown. We can
see that the minimum value of r occurs when there is a line with slope % which touches the circle centered at (3, 1)

and the circles centered at (0, 0) and (5, 2). To find P, the point at which the line is tangent to the circle at (0,0),

5

we simultaneously solve 22 + y* = r? andy = -3¢ = z? -+— Sp?=r? = =2 =

29
z= —\/5—75 Y= ~—\/—2—9 r. To find Q, we either use symmetry or solve (z — 3)% 4 (y — 1)% = r% and

y—1=—5(z—3). Asabove, we getz = 3 — -/%—9 ryy=1-+ %r. Now the slope of the line PQ is %,so

1+—5—7’—(——5—T) I+9%r  /29+1 2

mpg = — 2o v ) TV VI 2 g 54 50r =6V —8r
S—Er—\/_?‘jr 3—\/—57' 3v29 - 4r

58r =29 & r= %. So the minimum value of r for which any line with slope % intersects circles with

radius r centered at the lattice points on the plane is 7 = 3% ~ 0.093.

p By similar triangles, % = ll% = r= % The volume of the cone is

5h _ 25w dV. 25w , dh
16) h=egh' 0 256"

V=3mr?h=1inr ( Now the rate of

dt T 256 dt

ﬁ\/

16 T change of the volume is also equal to the difference of what is being added
h (2 cm® /min) and what is oozing out (kmrl, where 77 is the area of the cone and &k
av
X J— is a proportionality constant). Thus, — pri =2 — knrl.
Equating the two expressions for % and substituting b = 10, C‘lj-}tl =-03,r= _(1}69)_ = %, and —%8—1 = 1—(6)
12 V281
& 1= 2+/281, we get £r(10)*(~0.3) =2 — kn2 . 51281 « 5’“2 i 8oy 7;’50g . Solving for k
givesus k = M To maintain a certain height, the rate of oozing, k7rrl, must equal the rate of the liquid
2507 /281

being poured in; that is, 2~ = 0. mrl = 220+ 10T ;. 25 5v281 _ 200 4 37
&R ’ Tdt ’ 2507 /281 8 8 128

~ 11.204 cm®/min,




