4 [0 APPLICATIONS OF DIFFERENTIATION

41 Maximum and Minimum Values

1. A function f has an absolute minimum at z = ¢ if f(c) is the smallest function value on the entire domain of f,
whereas f has a local minimum at c if f{c) is the smallest function value when z is near c.

3. Absolute maximum at b; absolute minimum at d; local maxima at b and e; local minima at d and s;
neither 2 maximum nor a minimum at a, ¢, 7, and £.

5. Absolute maximum value is f(4) = 4; absolute minimum value is f(7) = 0; local maximum values are f(4) =4

and f(6) = 3; local minimum values are f(2) = 1 and f(5) = 2.

1. Absolute minimum at 2, absolute maximum at 3, 9. Absolute maximum at 5, absolute minimum at 2,
local minimum at 4 local maximum at 3, local minima at 2 and 4
y y
3 3
2 2
1 1
[ 1 2 3 4 5 x of 1 2 3 4 5 x
1. (a) y b) y (c) y
21 2
2..

13. (a) Note: By the Extreme Value Theorem, f must not ) y
be continuous; because if it were, it would attain

an absolute minimum.
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15. f(z) = 8 — 3z, > 1. Absolute maximum

f(1) = 5; no local maximum. No absolute or
local minimum.

wn
=
)

<
—_
E3

19. f(z) = 2%, 0 < = < 2. Absolute minimum

£{0) = 0; no local minimum. No absolute or
local maximum.

23. f(t) = 1/t,0 < t < 1. No maximum or

minimum.

21. f(z) =1 — /z. Absolute maximum f(0) = 1;
no local maximum. No absolute or local
minimum.

N
0 \x

17. f(z) = 2°, 0 < x < 2. No absolute or local
maximum or minimum value.

y
(2,4)

2. f(z) = 2%, —3 < = < 2. Absolute maximum
f(—8) = 9. No local maximum. Absolute and
local minimum f(0) = 0.

3,9 7

/ (2.4)

25. f(0) =sin6, —27 < 6 < 27. Absolute and
local maxima f (—2Z) = f(%) = 1. Absolute

and local minima f(—%) = f(3£) = ~1.
y

_iw/.\ \/’0 \‘/27 [

-z if0<z<2
2r—4 if2<2<3

<
=

2. f(z) = {

Absolute maximum f(3) = 2; no local

maximum. No absolute or local minimum.

N\
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35.

37.

39.

a.

45,

47.

49,

51.

SECTION 4.1 MAXIMUM AND MINIMUM VALUES O

fl@)=52"+4z = f(z)=10z+4. f'(z)=0 = z=-250 —2 is the only critical number.
- fl@) =2® + 32> — 24z = f'(x) == 32% + 6z — 24 = 3(2? + 22 — 8).
fl(®)=0 = 3(x+4)(z—2)=0 = =z = —4,2. Theseare the only critical numbers.

s(t) =3t' +4t° — 6> = () =120 +12° - 12t (1) =0 = 12%(t+¢—1) = t=0or

t? 4+t — 1 = 0. Using the quadratic formula to solve the latter equation gives us

—1£+4/12 —4(1)(-1 - -
t= WD _ ZLEVE ) 618, —1.618. The three critical mumbers are o, ZLEVS
2(1) 2 2

22+3  if20+32>0 ) 2 ifa>-3

9(z) = |2z + 3| = . g'(z) = . "
—(22+3) if 2c+3<0 -2 if z< -3

g'(z) is never 0, but g’ () does not exist for z = —%, so —3 is the only critical number.

g(t) =5t + 453 = g/(t) = W12 4 842/3 4/(0) does not exist, so t = 0is a critical number.

g'@) = %t‘1/3(2 +t)=0 & t=--2,s0t= —2isalso a critical number.

F(z)=2"°(z—-4)? =

Fl@)=2"° 2(m— )+ (x~4)* $27 V0 = o V5(c —4)[5-0-2+ (v — 4) - 4]

_(z—4)(14x - 16)  2(xz —4)(7Tz —8)
B Dl B 51/

= 0 when z = 4, £; and F’(0) does not exist.

Critical numbers are 0, £, 4.

. f(0) =2cosf +sin®6 = f'(§) = —2sin6 +2sinfcosh. f(§)=0 = 2sinf(cosf—1)=0 =

sinf =0orcosd =1 = 6= nm(naninteger) or = 2nm. The solutions & = nr include the solutions

0 = 2nm, so the critical numbers are € == n.

f(@)=zlnz = f'(z)=2(1/2z)+ (nz)-1=Ihz+1 f(z)=0 & hr=-1 <&

@ = e! = 1/e. Therefore, the only critical number is z = 1/e.

f(z) =32 - 122+ 5, [0,3]. f'(z)=6x—12=0 & z=2 Applying the Closed Interval Method, we

135

find that f(0) = 5, f(2) = —7, and f(3) = —4. So f(0) = 5 is the absolute maximum value and f(2) = —7 is the

absolute minimum value.

z=2,—1 f(-2)= -3, f(-1)=8, f(2) = —19, and f(3) = 8. So f(—1) = 8is the absolute maximum

value and f(2) = —19 is the absolute minimum value.

f(=2) =11, f(—-1) = 2, f(0) = 3, f(1) =2, f(3) = 66. So f(3) = 66 is the absolute maximum value and

f(£1) = 2 is the absolute minimum value.

fl@) =22° —32° 122+ 1, [-2,3]. f'(z) =62 ~62—12=6(z—2—2) =6(z—2)(c+1)=0 <«

flz) =222 +3, [-2,3]. f(z)=42"—do=4da(z® - 1) =4e(z+1)(z—-1)=0 & z=-1,0,1
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LX)

55,

57.

59,

61.

63.

65.

@) =

: _(m2—|—1)—m(‘2:c)_ 1-z?
o 0 fw =TS =

F(0)=0, f(1) =14, f(2) = 2. So f(1) = 3 is the absolute maximum value and f(0) = 0 is the absolute

=0 ¢ z==I1,but—1isnotin[0,2].

minimum value.
fit) =tv4-1t2, [~1,2].

2 2
flity=t 34— (-2t + (4—2)" 1= e Sl Gk R b

\/ —t2 Vi —t2 V-1t
Fft)y=0 = 4- 22 =0 = t?=2 = t==+/2 butt=—+/2isnotin the given interval, [-1,2].

f'(t) does not existif 4 — ¢ =0 = t = =2, but —2 is not in the given interval. f(—1) = —/3, f(\/i) =

and f(2) =0. So f (\/—2_) = 2 is the absolute maximum value and f(—1) = —+/3 is the absolute minimum value.

z) =sinz+cosz, |0, %|. () =cosz —sinz =0 <& sinz=cosz = Smx:l =
8 cos T

tanz=1 = z=2. f0)=1f(3) =vZ~14L f(5) = L1 ~1.37. So f(Z) = V2isthe

absolute maximum value and f(0) = 1 is the absolute minimum value.

flz) =27 [0,2]. fll@)=a(—e")+e " =e*(1-2)=0 & z=L1
F(0) =0, f(1) = e * = 1/e = 0.37, £(2) = 2/c® =~ 0.27. So f(1) = 1/e is the absolute maximum value and

f(0) = 0 s the absolute minimum value.

fl@)=z—3Inz, [1,4]. f’@):l—%:x—;—?’:o < =3, f"doesnotexist for z = 0, but 0 is not

in the domainof f. f(1) =1, f(3) =3 —3In3 = —0.296, f(4) = 4 — 3In4 ~ —0.159. So f(1) = 1is the
absolute maximum value and f(3) = 3 — 3In 3 ~ —0.296 is the absolute minimum value.
fl@)=2°(1—2), 0<2<1,a>0,b>0.
fl@) =z b1 —2)> (-1 + (1 —2)® az* =211 —2)" [z -b(-1)+ (1 - z) - d]
=211 —2)>"a — az — bx)

At the endpoints we have f(0) = f(1) =0 [the minimum value of f]. In the interval (0, 1), f'(z) =0 <

xTr =

b

(a23)- (
Sof(

(a)

1__@ )b_ a® <a+b—a>b_ at ¥ e
a+b)  (a+b)*\ a+b (a+b)* (a+bP  (a+b)t

3 is the absolute maximum value.

a+

From the graph, it appears that the absolute maximum value is about

F(—1.63) = 9.71, and the absolute minimum value is about

f(1.63) = —7.71. These values make sense because the graph is

. J 3
\/J symmetric about the point (0, 1). (y = z* — 8z is symmetric about

the origin.)

r—jv

-10
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69.
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®) flz)=2°—-8z+1 = f(z)=322-8.S0f(z)=0 = m:i@.

8 5\ 3 s /8 0
H(f3) = () =(8y5) 1=stFrs T
= —%@ +1=1- 55"29—\/6 [minimum] or 13§\/§ +1=1+ &g‘/g [maximum]

(From the graph, we see that the extreme values do not occur at the endpoints.)

(@ 04 From the graph, it appears that the absolute maximum value is about

£(0.75) = 0.32, and the absolute minimum value is

f£(0) = f(1) = 0; that is, at both endpoints.

- — 222 2z — 2a° — 42
O @) =2VT = @)= S e ”;té.; “):23f”__xi2.

Sof'(z)=0 = 3z~42°=0 = z(3—4z)=0 = z=0o0r3. f(0)= f(1) =0 [minimum],

and f(3) =2,/2 - (%)2 = 31—‘6/;5 [maximum].

1
The density is defined as p = % = % (in g/cm®). But a critical point of p will also be a critical point

e 22 _ 1o0gy—2V
of V' [since o7 = 1000V T

V(T) = 999.87 — 0.06426T + 0.00850437'% — 0.0000679T% =
V'(T) = —0.06426 + 0.0170086T — 0.00020377 2. Setting this equal to 0 and using the quadratic formula to

—0.0170086 + 1/0.01700862 — 4 - 0.0002037 - 0.06426
2(—0.0002037)

and V is never 0], and V is easier to differentiate than P

find T, we get T' = ~ 3.9665°C or 79.5318°C. Since

we are only interested in the region 0°C < T' < 30°C, we check the density p at the endpoints and at 3.9665°C:

1000 1000 1000
r(0) 099.87 00013; p(30) 10037608~ 0-99625; p(3.9665) 999 7447 000255. So water has

its maximum density at about 3.9665°C.

We apply the Closed Interval Method to the continuous function

I(t) = 0.00009045t° + 0.001438t* — 0.06561¢° + 0.4598t% — 0.6270t + 99.33 on [0, 10]. Tts derivative is
I'(t) = 0.00045225¢* + 0.005752t* — 0.19683t + 0.9196¢ — 0.6270. Since I’ exists for all ¢, the only critical
numbers of I occur when I”(t) = 0. We use a root-finder on a computer algebra system (or a graphing device) to
find that I’ () = 0 when ¢ ~ —29.7186, 0.8231, 5.1309, or 11.0459, but only the second and third roots lie in the
interval [0, 10]. The values of I at these critical numbers are 7(0.8231) ~ 99.09 and 1(5.1309) ~ 100.67. The
values of I at the endpoints of the interval are J(0) = 99.33 and I(10) ~ 96.86. Comparing these four numbers,

we see that food was most expensive at ¢ =~ 5.1309 (corresponding roughly to August, 1989) and cheapest at
t = 10 (midyear 1994).
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73. @) v(r) = k(ro — r)r? = kror® — kr® = o'(r) = 2kror —3kr®. Y(r)=0 = kr(2ro—3r)=0
= 1 =0or 2rg (but 0 is not in the interval). Evaluating v at 370, 210, and 7o, we get v(dro) = $kr},

1

v(%ro) = Zkrg, and v(ro) = 0. Since 5 > 3, v attains its maximum value at 7 = Zro. This supports the

statement in the text.

(b) From part (a), the maximum value of v is 5% krj.

(©) VJ

4,31
77kro

Zr, ro”
Bofr)=2+2? +r+1 = f(x) =1012" + 5120 + 1 > 1 for all z, so f'(z) = 0 has no solution.
Thus, f(x) has no critical number, so f(z) can have no local maximum or minimum.

71. If f has a local minimum at ¢, then g(z) = — f(2) has a local maximum at ¢, so g’(c) = O by the case of Fermat’s

Theorem proved in the text. Thus, f'(c) = —g'(¢) = 0.

4.2 The Mean Value Theorem

1. f(z) = 2% — 4z + 1, [0,4]. Since f is a polynomial, it is continuous and differentiable on R, so it is continuous on

[0, 4] and differentiable on (0, 4). Also, f(0) = L = f(4). f'(c) =0 & 2c—-4=0 & c=2,whichisin
the open interval (0, 4), so ¢ = 2 satisfies the conclusion of Rolle’s Theorem.

3. f(z) = sin2nz, [—1,1]. f, being the composite of the sine function and the polynomial 27z, is continuous and
differentiable on R, so it is continuous on [—1, 1] and differentiable on (—1,1). Also, f(—1) = 0 = f(1).
f'(e)=0 & 2mcos2mc=0 & cos2mc=0 < 2mc=xF+42mn & c=*3+nHn=0o0r

41, thenc = =3, 43 isin (-1,1).

B f(z)=1-a%% f(-1)=1-(-1)*3=1-1=0=f(1). f'(z)=-22""% 50 f'(c) =0hasno
solution. This does not contradict Rolle’s Theorem, since f'(0) does not exist, and so f is not differentiable

on (—1,1).

1. f(8; — g(O) . g 4 i The values of ¢ which satisfy f'(c) = % seem to be about ¢ = 0.8, 3.2, 4.4, and 6.1.
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13.

15.

12.
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(a), (b) The equation of the secant line is © fl&)y=z+4/z = f(z)=1-4/2>
y—5=8é5_15(m——1) o Sof'llc)=1%2 = =8 = c=2+2,and
y:%w—l—g f(c):2\/54—#5:3\/§.Thus,anequationofthe

2
tangentlineisy — 3v2 = 1 (z —2v2) <
2 Y= %w +242.
10
0 10
0 10
f(z) = 32z + 2z + 5, [—1,1]. f is continuous on [~1, 1] and differentiable on (—1,1) since polynomials are

continuous and differentiable on R.  f/(c) = £) ~ /(o) & 6c+2= f) = F(-1) _10=6 2 o
b—a 1-(-1) 2
6c=0 <« c¢=0,whichisin (—1,1).
f(z) =e2*, [0,3]. fis continuous and differentiable on R, so it is continuous on [0, 3] and differentiable on
/ F(b) — f(a) ae €8¢ a0 1—e7" 1—e %
. = - 2 = — _2 —
0,3). f'(e) s & e 3o ¢ ¢ 5 &= c=1In 8

_ 6
& o= _% ln<1 66 ) ~ 0.897, which is in (0, 3).
fl@)y=lz—1]. f(3)— f(0)=|3~1]—]0—1] = 1. Since f'(c) = —lifc <1 and f'(c) =1 ife > 1,

J'(¢)(3 — 0) = 3 and so is never equal to 1. This does not contradict the Mean Value Theorem since f'(1) does

not exist.

Let f(z) = 1+ 2z + 2® + 42°. Then f(—1) = —6 < O and f(0) = 1 > 0. Since f is a polynomial, it is
continuous, so the Intermediate Value Theorem says that there is a number ¢ between —1 and 0 such that f(c) = 0.
Thus, the given equation has a real root. Suppose the equation has distinct real roots a and b with @ < b. Then
f(a) = f(b) = 0. Since f is a polynomial, it is differentiable on (a, b) and continuous on [a, b]. By Rolle’s
Theorem, there is a number 7 in (a, b) such that f(r) = 0. But f'(z) = 2 + 3z* + 20z* > 2 for all z, so f'(x)
can never be 0. This contradiction shows that the equation can’t have two distinct real roots. Hence, it has exactly

one real root.

Let f(z) = 2® — 15z + ¢ for z in [—2, 2]. I f has two real roots a and b in [—2, 2], with a < b, then

f(a) = f(b) = 0. Since the polynomial f is continuous on [a, b] and differentiable on (a, b), Rolle’s Theorem
implies that there is a number 7 in (a,b) such that f'(r) = 0. Now f’(r) = 3r® — 15. Since r is in (@, b), which is
contained in [—2, 2], we have |r| < 2,50 7% < 4. It follows that 3r* — 15 < 3.4 — 15 = —3 < 0. This contradicts

J'(r) = 0, so the given equation can’t have two real roots in [—2, 2]. Hence, it has at most one real root in [—2, 2].
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21. (a) Suppose that a cubic polynomial P(x) has roots a1 < a2 < a3 < a4, 50 P(a1) = P(az) = P(as) = P(a4).
By Rolle’s Theorem there are numbers c1, ¢z, ¢3 With a1 < ¢1 < a2,a2 < c2 < az and a3 < c3 < a4 and
P'(c1) = P'(c2) = P'(cs) = 0. Thus, the second-degree polynomial P’(z) has three distinct real roots, which
is impossible.

(b) We prove by induction that a polynomial of degree n has at most n real roots. This is certainly true for n = 1.
Suppose that the result is true for all polynomials of degree n and let P(z) be a polynomial of degree n + 1.
Suppose that P(z) has more than n + 1 real roots, say a1 < as < az < -+ < Gn41 < Gnyz. Then
P(a1) = P(a2) = --- = P(an+2) = 0. By Rolle’s Theorem there are real numbers c1,. .. ,cnt1 With
a1 <c1 <a2,-..,0ny1 < Cng1 < @nyz and P'(c1) = -+ = P'(cpa1) = 0. Thus, the nth degree

polynomial P’(x) has at least n + 1 roots. This contradiction shows that P(z) has at most n + 1 real roots.

23. By the Mean Value Theorem, f(4) — f(1) = f'(c)(4 — 1) for some ¢ € (1,4). But for every ¢ € (1, 4) we have
f'(c) > 2. Putting f'(c) > 2 into the above equation and substituting f(1) = 10, we get

fA)=Ff1)+ f(c)(4—1) =10+ 3f'(c) > 10+ 3-2 = 16. So the smallest possible value of f(4) is 16.

25. Suppose that such a function f exists. By the Mean Value Theorem there is a number 0 < ¢ < 2 with

Fle)= %(J;(O) = g But this is impossible since f'(z) < 2 < 2 for all z, so no such function can exist.
27. We use Exercise 26 with f(z) = v/1+ =, g(z) = 1 + 1z, and @ = 0. Notice that f(0) = 1 = g(0) and

f=z) = 2\/% < % = g'(x) for z > 0. So by Exercise 26, f(b) < g(b) = I+b< 1+ fbforb>0.

Another method: Apply the Mean Value Theorem directly to either f(z) =1+ 2z — 1+ zorg(z) =vVI+z
on [0, d].

29. Let f(x) =sinz andlet b < a. Then f(z) is continuous on [b, a] and differentiable on (b, a). By the Mean Value
Theorem, there is a number ¢ € (b,a) with sina — sinb = f(a) — f(b) = f'(c)(a — b) = (cosc)(a — b). Thus,
lsina — sind| < {cosc||b—al < |Ja —b|. If a < b, then |sina — sinb| = |sinb —sina| < [b —a| = |a — b|. If
a = b, both sides of the inequality are 0.

31. Forz > 0, f(z) = g(z),s0 f'(z) = ¢'(z). Forz < 0, f'(z) = (1/z)' = —=1/2* and
¢ (z) = (1+1/z) = ~1/2?%, so again f'(z) = ¢’ (). However, the domain of g(z) is not an interval [it is

(—00,0) U (0, 00)] so we cannot conclude that f -- g is constant (in fact it is not).

33. Let f(z) = arcsin(i _T_ 1) — 2 arctan /z + % . Note that the domain of f is [0, 0o). Thus,

1 z+)—(@=z-1) 2 1 _ 1 B 1
m_l)z (z +1)° 1+ 2z Va(z+1l) Va(z+1)

fz) = = (. Then

= r+1
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SECTION 43 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH O

f(z) = C on (0,00) by Theorem 5. By continuity of f, f(z) = C on [0,00). To find C, weletz =0 =
arcsin(—1) — 2arctan(0) + $ =C = -5 -0+%=0=C. Thus, f(z) =0 =

L frz—1 .
arcsm(w+1> = 2arctan /z — §.

Let g(t) and h(t) be the position functions of the two runners and let f(¢) = g(t) — h(t). By hypothesis,
f(0) = g(0) — h(0) =0 and f(b) = g(b) —~ h(b) = 0, where b is the finishing time. Then by the Mean Value

Theorem, there is a time ¢, with 0 < ¢ <2 b, such that f'(c) = f—@b:—g(o) But f(b) = f(0) = 0,50 f'(c) = 0.

{

Since f'(c) = g'(c) — h'(c) = 0, we have g'(c) = h/(c). So at time ¢, both runners have the same speed
g'(c) = W (o).

4.3 How Derivatives Affect the Shape of a Graph

"M

1

. The function must be always decreasing and concave downward. Y

(a) f is increasing on (0, 6) and (8, 9).

(b) f is decreasing on (6, 8).

(c) f is concave upward on (2,4) and (7, 9).

(d) f is concave downward on (0, 2) and (4, 7).

() The points of inflection are (2, 3), (4,4.5) and (7,4) (where the concavity changes).

. (a) Use the Increasing/Decreasing (I/D) Test.

(b) Use the Concavity Test.

(c) At any value of = where the concavity changes, we have an inflection point at (z, f(z)).

on these intervals.
(b) Since f'(z) = 0atz = 1 and f changes from negative to positive there, f changes from decreasing to

increasing and has a local minimum at # = 1. Since f'(x) = 0 at z = 5 and f’ changes from positive to

negative there, f changes from increasing to decreasing and has a local maximum at x = 3.

. There is an inflection point at z = 1 because f"(z) changes from negative to positive there, and so the graph of f

changes from concave downward to concave upward. There is an inflection point at x = 7 because f/(z) changes

from positive to negative there, and so the graph of f changes from concave upward to concave downward.

—

. (a) Since f'(z) > 0 on (1,5), f is increasing on this interval. Since f/(z) < 0on (0,1) and (5, 6), f is decreasing
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N (@) flz)=2*-122+1 = f(z)=32>-12=3(z+2)(z - 2).
We don’t need to include “3” in the chart to determine the sign of f'(z).

Interval z+2 x—2 fz) f

< -2 - - + increasing on (—o00, —2)
~2 <z <2 + - - decreasing on (—2, 2)

x> 2 + + + increasing on (2, o)

So f is increasing on (—o0, —2) and (2, 0o) and f is decreasing on (—2,2).
(b) f changes from increasing to decreasing at x = —2 and from decreasing to increasing at x = 2. Thus,

f(—2) = 17 is a local maximum value and f(2) = —15 is a local minimum value.

© f"(z) =6z. f'(x) >0 <« z>0and f’(z) <0 <& 2 <0. Thus, fisconcave upward on (0, c0)

and concave downward on (—co, 0). There is an inflection point where the concavity changes,
at (0, £(0)) = (0, 1).
1B. (@) f(z) =2 —22° +3 = fl(z) =4 -4z =4z(2” — 1) = 4da(z + 1)(z — 1).

Interval z+1 z z—1 (=) f

z< -1 — - - - decreasing on (—o0, —1)
-l1<z<0 + — - + increasing on (—1 0)

0<zr<l + + - - decreasing on (0, 1)

z>1 + + + + increasing on (1, co)

So f is increasing on (—1,0) and (1, oo) and f is decreasing on (—oo, —1) and (0,1).
(b) f changes from increasing to decreasing at x = 0 and from decreasing to increasing atz = —l and z = 1.

Thus, £(0) = 3 is a local maximum value and f(£1) = 2 are local minimum values.

© f'z) =120 —4=12(2" - ) =12(z+ 1/V3)(z - 1/V3). f'(#)>0 < =z<-1/V3or
z>1/v3and f'(x) <0 & —1/v3 <z <1//3. Thus, f is concave upward on (—oco, —/3/3) and
(\/5 /3, 00) and concave downward on (—\/3’ /3,v/3/ 3). There are inflection points at (:t\/§ /3, 39%)

15. (a) f(z) =« —2sinzon (0,37) = f'(z)=1-2cosz. f'(x)>0 & 1—2cosz>0 & cosz< 3
& I<e<FoZ<z<dr fl(2)<0 & cosz>3; & 0<z<Zo<z<ZE Sofis

increasing on (%, 5% and (ZX, 37), and f is decreasing on (0, ) and (3£, ).

51\'

(b) f changes from increasing to decreasing at = <, and from decreasing to increasing at z = % and at x = I

3
Thus, f(3F) = & + V3 =4 6.97 is a local maximum value and f(3)=3%- /3 ~ —0.68 and

(==~ v/3 & 5.60 are local minimum values.

(© f'(z) =2sinz >0 & O0<z<wmand2r <z <3m () <0 & =<z < 2nr. Thus, fisconcave
upward on (0, 7) and (27, 37), and f is concave downward on (7, 27). There are inflection points at (7, )

and (27, 27).
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17. @y=flz)=2e" = fl(z)=ze"+e"=¢€"(z+1).S0f(z)>0 & z+1>0 & z> -1
Thus, f is increasing on (—1, co) and decreasing on (—oo, —1).
(b) f changes from decreasing to increasing at its only critical number, £ = —1. Thus, f(—~1) = —e~" is alocal
minimum value.
© fllz)=e"(z+1) = @)=+ (z+1)e=€e"z+2).S50f(z)>0 & z+2>0 <

z > —2. Thus, f is concave upward on (—2, co) and concave downward on (—oo, —2). Since the concavity

changes direction at z = —2, the point (—2, —26_2) is an inflection point.
18 @y = flz)= lnTm (Note that f is only defined for > 0.)
z
11z L _Inz
f,($)_\/5(1/$)—1”(5$ ) _Y& 2/ 2v3_2-lz_
- z - z 2/~ 2z3/2
2-lnz>0 <« Inz<2 & =z < e’ Therefore f is increasing on (0, €?) and decreasing on (e?, 00).
. . . 2 2 Ine? 2., .
(b) f changes from increasing to decreasing at z = €, so f(e®) = sk is a local maximum value.
e
22%/2(—1/z) — (2 — Inz)(3z/? —2zY2 4 342 (Inz — 2
© f"(z) = (=1/=z) - ( _ )Bz7) 3( )
(223/2) 4z
_2'/?(—2+3lnz—6) 3lnzr—8
B 473 - 4g5/2
f'z)=0 & =% & z=€¥5f"(x)>0 & z>e*3 5o fisconcaveupward on (¢*/%, c0)

and concave downward on (0, €%/3). There is an inflection point at (eg/ ) %e_‘l/ 3) ~ (14.39,0.70).

2. f(z)=2°-524+3 = f'(z)=5z"—-5=5=*+1)(z+1)(z—1).
First Derivative Test: f'(z) <0 = —-l1<z<1landf'(z)>0 = z>1lorz < —1. Since f’ changes

from positive to negative at ¢ = —1, f(—1) = 7 is alocal maximum value; and since f’ changes from negative to
positive at z = 1, f(1) = —1 is a local minimum value.

Second Derivative Test: f"(z) = 20z3. f'(z) =0 & z==1. f'(-1)=-20<0 = f(~1)=7Tisa
local maximum value. f”/(1) =20 >0 = f(1) = —1is alocal minimum value.

Preference: For this function, the two tests are equally easy.
B frx)=c+VI-z = fz)=1+3(1- )"V (-1)=1- 2—\/11=__.; Note that f is defined for

1—-g>0;thatis,forz <1 f(z) =0 = 2VI-z=1 = JVi-z=3 = l-z=3; =
= %. f' does not exist at z = 1, but we can’t have a local maximum or minimum at an endpoint.
First Derivative Test: f'(z) >0 = z<3and f'(zx) <0 = 2 <z < 1. Since f’ changes from

positive to negative atz = 3, f(2) = 2 is a local maximum value.

Second Derivative Test: f"(z) = —3(—%)(1 — z)73% (1) = -

f (%) = 2 is a local maximum value.

Preference: The First Derivative Test may be slightly easier to apply in this case.
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25.

27.

29.

31

33.

(a) By the Second Derivative Test, if f'(2) = 0and f"'(2) = —5 < 0, f has a local maximum at z = 2.

(b) If f'(6) = 0, we know that f has a horizontal tangent at x = 6. Knowing that f”(6) = 0 does not provide any
additional information since the Second Derivative Test fails. For example, the first and second derivatives of
y=(z—-6)" y=—(z—6)*" andy = (x - 6)® all equal zero for z = 6, but the first has a local minimum at

z = 6, the second has a local maximum at z == 6, and the third has an inflection point at = 6.

f/(0)=f'(2)=f(4) =0 < horizontal tangents at z = 0, 2, 4. y
fl(z)>0ifz <0or2<xz <4 = fisincreasing on (—co,0)
and (2,4). f'(z) <0if0 <z <20rz >4 = fisdecreasing
on (0,2) and (4,00). f“(z) > 0if1 <x <3 = fisconcave

upward on (1,3). f/(z) < 0ifz < lorz >3 = fisconcave
downward on (—o00, 1) and (3, 00). There are inflection points when

z = land 3.

fl(z) > 0if|z| <2 = fisincreasingon (-2,2). f'(z) < 0if|z| >2 = f isdecreasing on (—o0, —2)

and (2,00). f'(=2) =0 = horizontal tangent at x = —2. lim2 [f'(z)] =00 = thereis a vertical asymp-
Jra

tote or vertical tangent (cusp) atz = 2. f”(z) > 0ifz #2 = f is concave upward on (—00, 2) and (2, c0).

y y

(a) f is increasing where f' is positive, that is, on (0, 2), (4, 6), and (8, c0); and decreasing where f’ is negative,

that is, on (2, 4) and (6, 8).

(b) f has local maxima where f' changes from positive to negative, at x = 2 and at z = 6, and local minima where

f! changes from negative to positive, at z = 4 and at z = 8.

(c) f is concave upward (CU) where f’ is increasing, that is, on (3, 6) (e)
and (6, 00), and concave downward (CD) where f’ is decreasing, that
is, on (0, 3).

(d) There is a point of inflection where f changes from being CD to

being CU, that is, at x = 3.

@) f(x) =22 -32 - 122 = f(z)=062"-62—-12=6(z"—z—2) =6(x—2)(x+1). f'(z) >0
& z<-lorz>2and f'(z) <0 & —1<z<2 Sofisincreasing on (—oo,—1) and (2, 00), and f

is decreasing on (—1, 2).
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(b) Since f changes from increasing to decreasing at z = —1, f(—1) = 7 is a local maximum value. Since f
changes from decreasing to increasing at z = 2, f(2) = —20 is a local minimum value.
© f"(z) =62z —1) = f’(z)>0on(3,00)and f’(z) <Oon (d) 1,7 ¥ /
(—00,3). So f is concave upward on (3, o) and concave A
. . : . . G-/
downward on (—oo, 5). There is a change in concavity at = 3, 7' 2
and we have an inflection point at (%, - 17)
2,-20)
35. (a) f(z) =2'—62° = f(z)=12® - 12z =4z(z® — 3) = 0 whenz = 0, £/3.
Interval 4z z? -3 f(=z) f
z < —/3 - + - decreasing on (—oo, —v/3)
-V/3<z<0 - - + increasing on (—+/3,0)
0<z<V3 + - - decreasing on (0, v/3)
z >3 + -+ + increasing on (1/3, 00)
(b) Local minimum values f(£+/3) = —9, (d) \ y I
0
local maximum value f{0) = 0 1 2]+
(-1,-5)
© f'z)=122"-12=12(z*-1) >0 & 2°>1 & Nl \EY
2] >1 & z>1lorz< —1,s0 fisCUon (—o0,-1), (1, 00)
and CD on (—1, 1). Inflection points at (£1, —5) (=f3,-9) ~101  (J3,-9)

31. @) h(z) =32° —52°+3 = R/(2) =152* — 152° = 152%(¢® — 1) = O when z = 0, %1. Since 1527 is
nonnegative, ' (z) >0 & 2°>1 <« |z[>1 & 2z >1lorz < —1,s0 hisincreasing on

(—o0,—1) and (1, co) and decreasing on (—~1, 1), with a horizontal tangent at z = 0.
(b) Local maximum value h(~1) = 5, local minimum value A(1) = 1
(©) K (x) = 60z® — 30z = 30z (22* - 1) (@ y

(-1,5)
= 60:c(;c + %) (:c - —\}-—2)

h'(z) > Owhenz > Js or —Z= <2 < 0,50 hisCUon

—-L.0)and (-L,00) and CDon ( —o0o0, —-1 ) and (0, 1 ). 0 (l’i)
V2 V2 V2 V2

Inflection points at (0, 3) and (:t%, 3FIV2 ) [about

(=0.71,4.24) and (0.71, 1.76)].
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3. (@ Alz) =z +3 =

1 —1/2 _ z _z+2(x+3)  3z+6
Lz+3 Vi3 1l=—2— tyzFa= = :
v3lE+d) 4 ve ovz+3 V7 vz +3  2vz 13

The domain of A is [—3, c0). A’(x) > 0 forz > —2and A'(z) < 0for —3 < x < —2, so A is increasing on

A'(z)

(—2, 00) and decreasing on (—3, —2).

(b) A(—2) = —2is alocal minimum value. ' (<)) y
1
2z +3-3— (3z+6)- 21
o ) = T+ (3z + 2) =3 .
(2vz+3) = :
_6(z+3)—(Bz+6)  3x+12 _ 3=z+4) 1T-2
T Az +3)¥2 T A(z+3)32  4(z+3)3/?

A"(z) > 0forall x > —3, so A is concave upward on (—3, c0).

There is no inflection point.

4(z+1)
3Va?

C’'(z) > 0if -1 <z <0orz > 0and C'(x) < 0forx < —1,s0 C is increasing on (—1,00) and C'is

a. (@) C(z) = 23z + 4) = z*/* +45Y3 = C'(2) = %xl/?’ + %m_z/?’ e %w‘z/:‘(m +1)=

decreasing on {—o0, —1).

(b) C(—1) = —3 is alocal minimum value. (d)
y
—_ 3
© O (z) = %m—z/s . %x—s/s _ %m—s/s (z —2) = 4(1’3 52) (2,632)
x
C"(z) < 0for0 < z < 2and C”(x) > 0forz < 0and x > 2, s0
C is concave downward on (0, 2) and concave upward on (—oco, 0) _L\j x
and (2, o). There are inflection points at (0, 0) and (-1,-3)

(2,692) ~ (2,7.56).

43. (a) f(0) =2cosf —cos20, 0 <0 <2
f'(0) = —2sin 6 + 25in20 = —25sinf + 2(2sinf cos ) = 2sind (2cosf — 1).

Interval sin 0 2cosf —1 G f
0<0< % + + + increasing on (0, §
g<o<m + — - decreasing on (5, )
T<< 2 - - + increasing on (r, &%
rco<on - + - decreasing on (5%, 27)

(b) f(Z) = £ and f(5) = % are local maximum values and f(m) = —3 is a local minimum value.
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(©) f/(9) = —2sin6 + 2sin20 = (d
6 F3)
F'(8) = —2cosf+4cos20 = —-2cosf + 4(2cos? § — 1) g ol 372
= 2(4cos?6 — cosh — 2) %\ /ﬁ’\
3 0 T\ w [3m 276
1++/33 1 [1£+/33 2y T 4T
f'0)=0 « COS@:——S—— < 0 =cos I(T) i IP2
& 6=cos ! <1—+§——‘/3§> ~ 0.5678, (mr3)
27 — cos™! <1+T5/§§) ~ 5.7154, cos™* <-—-——1 _8\/?7?;) ~ 2.2057, or 21 — cos™* (-———1 —8\/§E> ~ 4.0775.

Denote these four values of 8 by 1. 04, 02, and 83, respectively. Then f is CU on (0, 61), CD on (81, 62),
CU on (62, 63), CD on (03,04), and CU on (64, 2). To find the exact y-coordinate for § = 6,, we have

fom /o5 2
f(81) = 2cos6; — cos20; = 2cosfy — (2cos® 6y — 1) :2(_1-’_—8&) —2(—1——1——8§> +1
=31+3/33 -2 - LVv33-24+1=2+3/33=5(1+v33) =91~ 1.26.

Similarly, f(f2) = & (1 — v/33) = y2 ~ —0.89. So f has inflection points at (61,y1), (62, ¥2), (03, 72),

and (64,y1).
45 z = has d HuU(-1 1
X = = in (—o0,—-1)U(-1,1) U (1,00).
f(z) 71" Gr)E=D as domain (—o0, —1) U ( YU (1,00)
27,2
. . %/ . 1 1 ,
(a) zl{r:il:loof(m) ml{r:iloo (:132 - 1)/:172 mgr:{:loo 1-— 1/:132 1-0 1’ S0y isatl
2
lim —f—l =cosincex? — 1and (2> — 1) = 0" asz — —17,s0z = —1lisa VA.
z——1— T° —
2
im =ocosince 22 — land (2> —1) = 0 asz — 1%, sox = Lisa VA.
x—1 -
2 2 2 2 2
o poon (@ —1)(2x) —2*(2x)  2x[(z*—1)—2°] -2 :
®) f(z) = 21 fl(z) = @2~ 12 = @ 1)z =@ Since

(22 — 1)? is positive for all x in the domain of f, the sign of the derivative is determined by the sign of —2z.
Thus, f'(z) > 0ifz < 0 (x # —1) and f'(z) < 0if > 0 (z # 1). So f is increasing on (—oo, —1) and
(—1,0), and f is decreasing on (0, 1) and (1, co).

(©) fl(z) =0 = z=0and f(0) = 0is alocal maximum value. (e) y
W (z? — 1)%(=2) - (—22) - 2(z® — 1)(2z)
@ (=) = [(z? — 1)2)? y=1
_22® —1)[—(z® — 1) + 427 2(3z° +1) 0
- (z? —1)4 To(z2—-1)37 x
The sign of f”(z) is determined by the denominator; that is,
f’(z) > 0if |z| > 1and f’(x) < 0if |z| < 1. Thus, f is CU on =1 =1

(=00, —1) and (1, c0), and f is CD on (—1, 1). There are no

inflection points.
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47. (@) lim (V22+1—2z)=o0and
T——00

ST
lim (V2Z+1-z) = lim (Va2 +1-a) il e
T—00 €T — 00

VELLIAT o L 0 soy=0isaHA.
VEt+ 14z 2o0/z2+14z

®) flz)=Vz2+1l-z = f'(z)= ﬁ — 1. Since \/_—f;ﬁ < 1lforallz, f'{z) <0,s0 fis
x x
decreasing on R.
(c) No minimum or maximum (e) :
1/2 ~1/2
@ pr@ < ED W -2 je+ 1))

(Va?+1)°
2
2 1/2 _ T 1
(m +1) (.{E2+1)1/2 _ (m2+1)—$2 OK -

z2+1 (z2 4 1)3/?

1

=m > 0,s0 fis CUonR. No IP

49. f(z) = In(1 — In z) is defined when = > 0 (so that Inz is defined) and 1 — Inz > O [so that In(1 — In ) is

defined]. The second condition is equivalentto 1 > Inz < =z < e, so f has domain (0, €).

(@) Asz — 0%, lnz — —00,501 —Inz — oo and f(x) — 00. Asz — e ,lnz — 17,501 —Inz — 0% and

f(z) = —oo. Thus, z = 0 and = = e are vertical asymptotes. There is no horizontal asymptote.

N S A A , , N :
o) f(z) = " ( m) £ —_x(l “Tna) < 0on (0,€). Thus, f is decreasing on its domain, (0,¢€) .

() f'(z) # 0on (0,e), so f has no local maximum or minimum value.

[z -lnz) _ z(=1/z)+(1-Inz)

@ f'@) = [z(1 -lnz)]>  22(1-Inz)?

(e

_ Inz

T 22(1 —Inz)?

sof'(z)>0 & Inz<0 < 0<z< 1 Thus, fisCUon

(0,1) and CD on (1, €) . There is an inflection point at (1,0) .

5. (@ lim e /@D = 1since ~1/(z +1) — 0,s0y = 1isa HA. lim1+ e Y@ = 0 since
- r— —

—1/(x+1) — —o0, lim e /@Y = oo since —1/(z + 1) — oo, s0z = —1isa VA.

z——1"

) flz) =e VED o f(g) = e V=D [—(—1)(w—+1_175] [Reciprocal Rule] = e~1/(+D /(5 4.1)2

= f'(x) > 0for all z except —1, so f is increasing on (—o0, —1) and (-1, c0).
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(¢) No local maximum or minimum (e) y
@ iy < EEDEE [+ 107 eV (o + 1)
@+ 1) =1
_eVE o (a42) e VO ee 1) P
- (z + 1) N (x4 1)* g0 x

53. (a)

®

f'(z)>0 & 2z+1<0 & z<-—1,50fisCUon
(—00,—1)and (—1,—3), and CD on (—~3, c0). f has an IP at

(~3.¢7).

L From the graph, we get an estimate of f(1) ~ 1.41 as a local
maximum value, and no local minimum value.
-6 6 z+1 , 1-=z
)= — = )= ——
@)= = W=
-2 fllz)=0 & z=1 f(1)= % = /2 is the exact value.
From the graph in part (a), f increases most rapidly somewhere between x = —% andz = — %. To find the

exact value, we need to find the maximum value of f’, which we can do by finding the critical numbers of f'.
2z° —3z—1

v _3£VIT 3417
i (a:)—~—(3162+1)5/2 =0 & z= 1 %= 0

corresponds to the minimum value of f.

The maximum value of f' is at <3—:j@, I- @ ) ~ (—0.28,0.69).

85. f(z) =cosz + jcos2x = f'(z)=—sinz—sin2x = f"(z)=—cosz —2cos2x
(a) c N From the graph of £, it seems that f is CD on (0, 1), CU on (1, 2.5),
\ / CD on (2.5,3.7), CU on (3.7, 5.3), and CD on (5.3, 2r). The points
TN 27 of inflection appear to be at (1,0.4), (2.5, —0.6), (3.7, —0.6), and
| ] (5.3,0.4).
-2
(b) 2 From the graph of f” (and zooming in near the zeros), it seems that f
4

W
! /\ A is CD on (0,0.94), CU on (0.94, 2.57), CD on (2.57,3.71), CU on
0

27
2 \/ (3.71,5.35), and CD on (5.35, 2). Refined estimates of the

inflection points are (0.94, 0.44), (2.57,—0.63), (3.71, —0.63), and

(5.35,0.44).
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57.

61.

In Maple, we define f and then use the command 5
plot(diff (diff (f,x),x),x=-3..3) ;. In Mathematica, we [ (2
define f and then use Plot [Dt [Dt [£,x],x], {x,-3,3}1.We -3 3
see that f/ > 0forz > 0.1and f” < O for z < 0.1. So f is concave J
up on (0.1, co) and concave down on (—ooc, 0.1). i

Most students learn more in the third hour of studying than in the eighth hour, so K (3) — K (2) is larger than
K (8) — K(7). In other words, as you begin studying for a test, the rate of knowledge gain is large and then starts to

taper off, so K'(t) decreases and the graph of K is concave downward.

100 From the graph, we estimate that the most rapid increase in the
|4
percentage of households in the United States with at least one VCR
occurs at about t = 8. To maximize the first derivative, we need to
determine the values for which the second derivative is 0. We’ll use
. V() = ﬁibﬁ and substitute a = 85, b= 53, and ¢ = —0.5 later.
bee)
VI'(t)= _ o) by the Reciprocal Rule| and
=~ rpemy ™ P '
1+ be)? . ce®t — et . 2(1 + bet) - beett
V"(t):—abc-( +be™)” - ce® — e 2(2—|~ ) - bee
[(1 4 bet)?]
—abc - ce® (14 be®)[(1 + be®) — 2be]  —abc®e®(1 — be™)
- (1 + bect)s T (L bet)3

SoV"(t) =0 & 1=be® & e =1/b Now graphy = e %5 and y = 2. These graphs intersect at
53

t & '7.94 years, which corresponds to roughly midyear 1988. [Alternatively, we could use the rootfinder on a

0.5t

calculator to solve e %% = Z. Or, if you have already studied logarithms, you can solve e = 1/b as follows:

ct=In(1/b) < t=(1/c)In(1/b) = —2In & ~ 7.94 years.

63 f(z)=az® + b2’ +cx+d = f(z)=3ax®+2bx +c. Weare y
given that f(1) = 0 and f(—2) =3,s0 f(1) =a+b+c+d=0and 23 ¥
f(=2)=—-8a+4b—2c+d=3. Also f'(1) ==3a+2b+c=0and /\
f'(=2) = 12a — 4b + ¢ = 0 by Fermat’s Theorem. Solving these four / -2 0 .

equations, we get ¢ = %, b %, c= ——%, d= %, so the function is

|

flz) =122 +32% — 120+ 7).
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65. Suppose that f is differentiable on an interval I and f'(z) > 0 for all z in I except z = c. To show that f is

increasing on I, let 21, 2 be two numbers in I with z1 < z3.

Casel 1 < zz < c. LetJ betheinterval {z € I | z < c}. By applying the Increasing/Decreasing Test
to f on J, we see that f is increasing on J, so f(z1) < f(z2)-

Case2 c < x1 < xz. Apply the Increasing/Decreasing Testto fon K = {z € [ | > c}.

Case3 1z < x2 = c. Apply the proof of the Increasing/Decreasing Test, using the Mean Value Theorem
(MVT) on the interval [z1, 22] and noting that the MVT does not require f to be differentiable at
the endpoints of [z1, z2].

Case4 c¢ =z < z2. Same proof as in Case 3.

Case5 x1 < c < x. By Cases 3 and 4, f is increasing on [z1, ¢] and on [¢, z2], s0 f(z1) < f(c) < f(z2).

In all cases, we have shown that f(z1) < f(z2). Since z1, z2 were any numbers in I with z; < z2, we have shown

that f is increasing on I.

67. (a) Since f and g are positive, increasing, and CU on I with " and g’ never equal to 0, we have f > 0,
P
f>0,f">0,9>0,g >0,g">00nl Then(fg) = f'g+fg =
(Ffg)' =f'g+2f'gd+fg" > f'g+fg” >00onl = fgisCUonl.

(b) In part (a), if f and g are both decreasing instead of increasing, then f' < 0 and ¢’ < 0 on I, so we still have

2f'g' > 0onl. Thus, (fg)" = f"g+2fg + fg”" > f'g+fg”" >00onI = fgisCUon I as in part (a).

(c) Suppose f is increasing and g is decreasing [with f and g positive and CU]. Then f' > 0and g’ < Oon I,

$0 2f'g’ < 0 on I and the argument in parts (a) and (b) fails.

Example 1. I = (0,00), f(z) = %, g(x) = 1/z. Then (fg)(z) = z°, so0 (fg)'(z) = 2z and
(fg)"(z) =2 >0o0n 1. Thus, fgisCUon I.

Example 2. I = (0,0), f(z) = 4z v/z, g(z) = 1/z. Then (fg)(z) = 4 /=, so (fg)'(z) = 2/+/z and
(f9)"(x) = —1/v/x* < 0 on I. Thus, fgis CD on I.

Example 3. [ = (0,00), f(z) = z2, g(z) = 1/z. Thus, (fg)(x) = x, so fg is linear on I.
63. f(z) =tanz —2 = f'(z) =sec®’z—1>0for0<z < Zsincesec’z > 1for0<z < Z.So fis

increasing on (0, §). Thus, f(z) > f(0) =0for0<z < % = tanz—2>0 = tanz >z for

O<z<3.
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n.

73.

15.

Let the cubic function be f(z) = az® +bz® + cx+d = f'(z) =3az’ +2bx+c = [’(x) = 6az +2b.
So f is CU when 6az +2b >0 <z > —b/(3a), CD whenz < —b/(3a), and so the only point of inflection
occurs when z = —b/(3a). If the graph has three z-intercepts 1, 22 and 3, then the expression for f (z) must
factor as f(z) = a(z — z1)(z — 2)(z — x3). Multiplying these factors together gives us

f(@) = a[z® = (z1 + 22 + 3)a” + (2122 + L2124 + 2273)T — z12273). Bquating the coefficients of the
z2-terms for the two forms of f gives us b = —a(z1 + =2 + zs). Hence, the z-coordinate of the point of inflection

e DL __ —o(zitz2t+ws) w1+ 32+ T
3a 3a B 3 '

By hypothesis g = f is differentiable on an open interval containing c. Since (¢, f(c)) is a point of inflection, the
concavity changes at z = ¢, so f”/(z) changes signs at = c. Hence, by the First Derivative Test, f/ has alocal

extremum at z = ¢. Thus, by Fermat’s Theorem f”{c) = 0.

Using the fact that |z| = v/2?, we have that g(z) = zVz? = ¢'(z) = Va2 + V22 =2vVa?=2|z| =

g’ (z) = Zx(mz)ﬁl/z = % < 0forz < 0and g’ () > 0forax > 0,s0 (0,0) is an inflection point. But g (0)

does not exist.

4.4 Indeterminate Forms and L' Hospital's Rule

The use of 'Hospital’s Rule is indicated by an H above the equal sign: 2 .

1.

3.

(a) ilg}z ;Ez; is an indeterminate form of type %

(b) 31:1_% {)% = 0 because the numerator approaches 0 while the denominator becomes large.

(©) ;11)1}2 Z—Ez—; = (' because the numerator approaches a finite number while the denominator becomes large.

(@ 1f ixir}l p(x) = oo and f(z) — 0 through positive values, then il}g ?—((zl) = oo. [For example, take a = 0,
p(z) = 1/2%, and f(z) = z>.] If f(z) — O through negative values, then ;E)r}l I]Z—(—(il) = —oo. [For example,

take a = 0, p(x) = 1/2%, and f(z) = —2*] I f(x) — O through both positive and negative values, then the
limit might not exist. [For example, take a = 0, p(z) = 1/2°, and f(z) = z.]

o P(2)
@5 4@

(2) When  is near a, f(z) is near 0 and p(z) is large, so f(x) — p(x) is large negative. Thus,
lim (£(z)  pla)] = —oo.

. . . 00
is an indeterminate form of type —.
00

(b) lim [p(z) — g(=)] is an indeterminate form of type oo — oo.

(¢) When z is near a, p(z) and g(z) are both large. so p(z) + q(z) is large. Thus, lim [p(z) + g(z)] = oo.
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. This limit has the form %. We can simply factor the numerator to evaluate this limit.

z?—1 - lim (z+1)(z-1)

a:—l»—l z+1 z——1 x-+1 - zl—lfr—ll(x - 1) =
0 . x—14n 98 9 s 9 9
. This limit has the form 3. iﬂ 1 :ii_.ml@ e galvl_'niw e 5(1) =%
. This limithas the form &, lim  ——"_ & i 222 = 4y tang = —oc.

ao(n/2)t 1 —8INZT  ooi(n/2)F —COST  a—(n/2)t

et -1y et
=tin(1)—=oosinceet—»13nd3t2—»0+ast——>0.
o

This limit has the form 2. lim 32

t—0 ¢3

tanpr u ; psec’pr _ p(1)? _bp

This limit has the form 2. li = = ==
is limit has the form §. lim ngE  AbgseteE qiP g
This limit has the form 2. lim 22 & i 22 _¢
z—0 T T—00
lim+ [(lnz)/z] = —oo since Inz — —oo as z — 07 and dividing by small values of z just increases the
z—0

magnitude of the quotient (In z)/z. L'Hospital’s Rule does not apply.

5'~3 . 5533

This limit has the form 2. }ill%) =In5—-In3=In3

t t—0 1
T 1 _ e z
This limit has the form 3. lim = Ii = £ lim ©- Ly L S = %
T T T
xT xz T z
. This limit has the form 2. lim Z5 £ lim = & lim = & lim = = oo
T—00 I T—00 T—00 T—00
s —1 _ 2
This limit has the form §. tim =—= £ lim S —a ”11$ = Iim \/—1—1:2 = % =1
ZT— T— T - w
This limit has the form §. lim ! —— £ lim =2 & lim =8 :%
z— r— T
. 31:11'1}] % = g—ig = g— = 0. D’Hospital’s Rule does not apply.
. x T
This limit has the form 2. lim ——— & fm —— 1 — jyy 1T2C B ) 26
® z—oo ln(l -~ 26”) z—00 1 . 9@ z—oo 2e% z—o0 2eT
1+ 2e=
— —_— — 2 —
. This limit has the form £, Tm ~— 2t 18Z & g “14+ V2 p g, Uz LIRS
0"251 14 cosmz o=l —wsinmz a—1 —w2cosmz  —72(—1) 72
a _ a—1 . a—2 _
This limit has the form %. lim1 z (;ait)z L . lim1 a;(w — l)a Y lin} ola 21):0 = a(a2 )

153

This limit has the form 0 - (—o0). We need to write this product as a quotient, but keep in mind that we will have to

differentiate both the numerator and the denominator. If we differentiate e we get a complicated expression that
nx

. . o . . Inz
results in a more difficult limit. Instead we write the quotient as prey%
preas

. e Inz u .. 1/x —24%/2 o _
lim /zlnz = 11_1'%14_ pmc v zl—l>rtl)l+ = S 11m+(—2 Vz)=0

z—0t z-—0
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39,
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45,

47.

49,

51.

53.

55,

57.
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This limit has the form oo - 0. We’ll change it to the form 2.
sinbz g ,, 6cosbx 6(1)

li 2 = = = =
Sayeeten BinOs = alsl—»o tan 2z ill% 2sec? 2z  2(1)? 3
g —z2 2 u 3z’
This limit has the form co - 0. lim z°e™® = lim —5 = lim 7 = lim > = lim 7 =
z—00 z-0 % z—o0 Qret xz—o0 2e® x—o0 dpe®
. This limit has the form 0 - (—o0).
Inz = 1/x 1 2

Jm, Ina ten(ne/2) = I Soltre/D) e Cafesci(aafd) | o/ 7

. 1 . 1 1 . sinx—x
lim|=—cscx) =lim{ = - — |} = lim —
z—0\ 2 z—0\z sinz z—0 zsine

cosx — 1 H . —sinx 0
im —————— = lim ———————— = - =0
0 xCoST +sinz x—0 2cosx —xsinz 2

We will multiply and divide by the conjugate of the expression to change the form of the expression.

52 _ Jo2 2
lim (Vw2+m—w)=lim( AT T VE +:c+m> lim (w +ac)
1 V2t -t e— \/w2+:c+w
T . 1 1
= lim ———— = lim —.
emoo 22tz #oe T+ 1/z+1 \f+1 2
As an alternate solution, write /22 + & — « as Vi@? + x — Vx2, factor out /2, rewrite as
(v/1+1/z —1)/(1/z), and apply I"Hospital’s Rule.

The limit has the form co — oo and we will change the form to a product by factoring out z.

T—00 ZT— 00

lim (z —Inz) = lim w(l - 1__m> = oo since lim LEp ] lim b 0.
T—r 00 T— 00 X 1

00 H T— 00
= z° Iny = 2?1
y=x = Iny=a"lng, so0

lim Iny = lim o’z = lim ne g g, Y2 _ (-Lc"’) =0 =

z—0t z—0+ ]./a)2 z—07T —2/$3 z—0+ 2
lim z°° = lim e®¥ =¢e® =1
z—0+ z—+0t
1 . . In(l—2z) v, —2/(1-—2z)
= = 1/a o — — e = —
y=(1-2x) = Iny ln(l 2z), so ixl%lny igr%) - lim T 2
lim (1 — 2z)/® = lim ey =e 2
@ —r —0
= 1+§—%—-i ’ = hhy==zln 1+§-+—5- =
v= r  z? 0= x 22
5 3 10 3 5
1n<1+§+—5> (--——2——3>/<1+—+'—2> 3+}_9
lim lny = lim ——————%* = lim = lim —g—%s =3,
z—00 £— 00 1/:1: z—00 —1/:1,'2 L~ 00 1+§+_5_
z  z?

T o0

, 3., 5\ . In 3

so lim {1+=-+-—5) =lime Y =e°.
T— 00 T T

y=2"* = lny=(l/z)Inz = limlny= lim LS lim 1z

rT—00 r—o0 T w00 1

lim z¥/% = lim e®¥=e’ =1
T 00 €T—>00
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xr e xr

 \ _ lim Inz—In(x+1) u lim 1z —1/(z+1)
T+ z—>00 1/z z—00 —1/x2

lim Iny = lim mln(

x—00

2
. x . —XT
= Jim <—$+x+1> - e el

x
g T : -
so lim = lim ™Y =¢!
x—oo \ L + 1 r—00

x -17® 27 —1
Or: lim ( ad > = lim [(m—}—l) ] e [lim (1—{—1) ] =e!

1
61. y = (cosz)/** = Iny= —lncose =
lim oy = i, et E e, SOAMEE L, SEetE L
z—0t = z—0 z? N z—0t 2x - x—0t 2 T2
lim (cosz)/®” = lim ™Y =e V2 =1/,/c
Jim, (cosz) Jim e /e
63. 6r ) From the graph, it appears that lim z [In(z + 5) — Inz] = 5.
_________ To prove this, we first note that
ln(m+5)—lnm=1n$+5 =1n<1+g) — Inl=0asx — oo. Thus,
° » In(z +5) -1 —= -
. [z—(z+5) —=2? : 5z°
= lim |=—_2 T2 T2 | = i ———
:c—»nolo[ z(z +5) 1 z1—>nolo z2 45z

From the graph, it appears that

lim M = lim f/(m) = 0.25. We calculate
z—0 g(z)  =—0 g'(x)
flg) .. =1 u .. e’ 1

i =1 =1 —_— =,
ilg%) g(x) 20078 14z +-03a2+4 4

nt

.\ nt .
69. First we will find lim (1 + %) , which is of the form 1%°. y = (1 + %)

In(14i/n) Hy bim (=i/n%)

lim Iny = =t lim =t lim

lim ntln 1—|—i —_ —_—t i : =1
n—00 n—o0 n n—+c0 1/n n—oo (1 +i/n){(—~1/n?) ] +i/n -

-\ nt
= lim 'y = €. Thus,as n — oo, A == A <1 + %) — Age't.

n—oo

= lny= ntln(l—l— %),so

155
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71. We see that both numerator and denominator approach 0, so we can use 1’Hospital’s Rule:

=

lim V2a3z — 2% — a Yaaz lim 2 (2d°z — x4)_1/2 (20° — 42%) — a(})(aaz) %% a?
z—a a — & ax3 T—a _i (aw3)_3/4(3a$2)

%(Qasa - a4)_1/2 (2¢® — 40®) - 3a%(a”a) —2/3

—% (aa3)_3/4(3aa2)
-1/ -2/
@) 3@ casde s,
—%a3(a4)_3/4 T8 T\t T e

73. Since f(2) = 0, the given limit has the form 3.

! 4
lir%f(2+3x)::f(2+5m) H lin})f (2 + 3z) 341-f (2+5x)-5
XL T—

= f'(2)-3+F'(2)-5 =8f'(2) =8-7=156

75. Since }lbir%[f(z + h) — f(z — h)] = f(z) — f(z) = 0 (f is differentiable and hence continuous) and %ir% 2h =0,
we use 1’Hospital’s Rule:

i LEE RSN 8y LEERD =S RN _ L@ +16) 216 _ g

h—0 2h h—0 2
fz+h)—f(z—h)
2h
between (z — h, f(z — h)) and (z + h, f(z + h)). As

is the slope of the secant line

h — 0, this line gets closer to the tangent line and its slope

approaches f'(x).

71. (a) We show that lin% f% = O for every integer n > 0. Lety = ;15 Then
——1/:102 n n—1 1
limf(m)zlime — :limg—glim Y g-nglim—Th:O
x>0 x2n z—0 (z2) y—oo €Y  y—oco €Y y—oc e¥
im £ = him 22 7@ _ i 2 i L2 0 Thus, £(0) = tim B O _ i, SE)
z—0 " z—0 1}2n x—0 xz—0 .’Ezn z-—0 z—0 z—0 I

(b) Using the Chain Rule and the Quotient Rule we see that f (&) (z) exists for x # 0. In fact, we prove by induction
that for each n > 0, there is a polynomial p,, and a non-negative integer kn, with f™ (z) = pn(z)f(z)/z*" for
x # 0. This is true for n = 0; suppose it is true for the nth derivative. Then f'(z) = f(z)(2/z>), so

Fo0(@) = 24 [pn(@)£(2) + pa(@) ' (@)] = kna*® Tpa(2) ()]0
- [zk"p;(:c) + pn(z) (2/:03) - kna:k"_lpn(:c)] f(:c)m_%"
= [25"20,(@) + 2pn(2) = knz*" "2 pu (@) f ()22

which has the desired form.
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Now we show by induction that £(™ (0) = 0 for all n. By part (a), f'(0) = 0. Suppose that f(™(0) = 0.

Then

——= = lim
-0 xT x—0

f(n+1) (0) — iim f(n)(m) :g(n) (O)

z—0 x x—0

o im L&) _ _
= Impn(@) fim or5y = Pe(0)-0=0

4.5 Summary of Curve Sketching

f9@) _ o @@/ _ L pa(@)f ()

LRn+1

1. y=f(z)=2*+z=2(z>+1) A. fisapolynomial, so D = R. H. Y

B. z-intercept = 0, y-intercept = f(0) =0 C. f(—=z) = —f(z),so f

is odd; the curve is symmetric about the origin. D. f is a polynomial, so

there is no asymptote. E. f'(z) = 3% + 1 > 0, so f is increasing on
(—o0,0c). K. There is no critical number and hence, no local maximum
or minimum value. G. f"(x) =6z > 0on (0,00) and f”(x) < 0 on
(—o0,0), so f is CU on (0, 00) and CD on (—00, 0). Since the concavity

changes at z = 0, there is an inflection point at (0, 0).
3y=f(z)=2-152+92" —2® = ~(z~2)(2’ =Tz +1) A. D=R B. y-intercept:
z-intercepts: f(z) =0 => z = 2 or (by the quadratic formula) x = 7—*%‘13 ~ 0.15, 6.85

C. No symmetry D. No asymptote H. Y
E. f'(z) = —15+ 18z — 32° = ~3(2® — 6z +5)
=-3z—-1)(z-5)>0 & 1l<z<b

so f is increasing on (1, 5) and decreasing on (—o0, 1) and (5, c0).

f(0) =2;

(5,27)

3,11)

F. Local maximum value f(5) = 27, local minimum value f(1) = —5 N
G f'(z)=18—6z=-6(z—3)>0 & x<3,50fisCUon =3)
(—00,3) and CD on (3, 00). IP at (3,11)

5 y=f(z)=2x'+42° =23(z+4) A. D=R B. y-intercept: H.
f(0) = 0; z-intercepts: f(z) =0 <« x=—4,0 C. Nosymmetry
D. No asymptote E. f'(z) =4z +122° = 42*(z +3) >0 «

z > —3, 50 f is increasing on (—3, 00) and decreasing on (—o0, —3).

F. Local minimum value f(—3) = —27, no local maximum

G. f'(z) =120 + 24z = 122(2 + 2) <0 & -2<z<0,

so f is CD on (—2,0) and CU on (—o0, —2) and (0, 00). (—3,-27)
IP at (0, 0) and (—2, —16)

(=)
=

(~2,-16)
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1. y=f(z) =22 —52° +1 A. D=R B. y-intercept: f(0) =1 C. Nosymmetry D. No asymptote

E. f'(z) = 10z* — 10z = 10z(z® — 1) = 10z(z - 1)(z® +z+ 1),50 f'(z) <0 & O<z <1land
f'(x)>0 < z<0orz > 1. Thus, fisincreasing on (—oo, 0) and (1, c0) and decreasing on (0, 1).
F. Local maximum value f(0) = 1, local minimum value f(1) = —2 H. y
G. f'(z) =40z® — 10 = 10(42® - 1) so f'(2) =0 & z=1/V4 @)

f'®)>0 & z>1/Y4and f'(2) <0 & z<1/V4,

so f is CD on (~00,1/%/4) and CU on (1/V/4, o). P

a,-2)

9
IP at 2) ~ (0.630, —0.786)

S
T 2(A)

S y=f(z)==z/(x—1) A. D={z|z#1} =(-00,1)U(1,00) B. z-intercept =0,

y-intercept = f(0) =0 C. Nosymmetry D. lim 2 = 1,s0y = 1is aHA.
z-stoo x — 1

lm xmlz_oo, lim+a:m1:OO,so:1:=1isaVA. H. y k
z—1" - z—1 =
E. f'(z) = (z(m— 1)1)—2:1: =& _11)2 < 0forz # 1, so f is decreasing y=1

on (—oo,1) and (1,00). F. No extreme values

G. f'(z) = >0 & z>1,50fisCUon (1,00) and CD

_2
(z—-1)
on (—oo,1). No IP

Ny=f(z)=1/(z*-9) A D={z|z#+3}=(—00,-3)U(-3,3)U(3,00)

1

B. y-intercept = f(0) = —g5, no z-intercept C. f(—z) = f(z) = [ is even; the curve is symmetric about

. . 1 . 1
=0, soy=OlsaHA. mli)l?_m:—m,zglél+m=m,

the y-axis. D. Egr:goo g

z_l}{r;_ m2—1—9 = oo,m_lfr_lé+m2—1_9 = —00, soz =3 and x = —3 are VA.

E. f'(z) = _@2__3_59_)2 >0 & <0 (z#—3)so fisincreasing H. y

on (—oo, —3) and (—3, 0) and decreasing on (0, 3) and (3, 00) . J

F. Local maximum value f(0) = —1. >
G. o = —2(2® - 9) 2(:2(im3)24(m2 - 9)(22) _ f(;gZ_—f-g?z . x=-3 x=3

22>9 & >3 orz< —3,s0 fis CUon (—00,—3) and (3, c0)
and CD on (-3, 3). No IP



SECTION 4.5 SUMMARY OF CURVE SKETCHING O 159
13.y=f(zx)=2/(z* +9) A. D =R B. y-intercept: f(0) = 0; z-intercept: f(z) =0 < z=0
p

C. f(—z) = —f(z), so f is odd and the curve is symmetric about the origin. D. lim [z /(z*+9)] =0,50

(Z2+9)(1)—2(2x) 9-2* (34+x)B-2)

=0isaHA;noVA E. f'(z) = = = >0 &
g POy e T @y
—3 < x < 3,s0 f is increasing on (—3, 3) and decreasing on (—oo, —3) and (3, 00).
F. Local minimum value f(—3) = —3%, local maximum value f(3) = ¢
2 2 2. 2
G. f'(z) = (#®+9)" (—2z) — (9 2;)2 2(z* + 9)(2z) - y
[(z2 + 9)°] \
_ ) +9)[- (& +9) 20~ )] 6.4
(z2 +9)*
22(z® — 27 *
:—m(—z——-?lzo & z=0,%£v27=+33 (-2.-5)
(562 + 9) \\
() >0 & —3v3<xz<Oorz>3+3,s0fisCUon

(~3+/3,0) and (3/3,0), and CD on (—oc0, —3+/3 ) and (0,3v/3).
There are three inflection points: (0,0) and (£3 v/3,£%+/3).

r—1

15.y=f($)= 22

A. D={z|xz+# 0} =(—00,0)U(0,00) B. No y-intercept; z-intercept: f(z) =0 <

r—1
72

z=1 C. Nosymmetry D. lim 37—21- =0,s0y =0is aHA. lin})
T—

z—too

= —o0,s0x = 0isa VA,

2 2
oy 2 l—(x-1)-20 —u’42z —(x-2) i
E. f'(z)= @) . oo =— ,s0f'(z)>0 & 0O0<z<2and
fi(z) <0 < =z <0orz > 2. Thus, f is increasing on (0, 2) and H. y
24) 3.2
decreasing on (—o0, 0) and (2, 00). ( 4)( 9)
0 1 x

F. No local minimum, local maximum value f(2) = 3.

(=)~ [~(z—2)]-32® _ 22° 62" 2z - 3)

G. f”(z) == (.'1:3)2 6 4

f"(z) is negative on (—o0, 0) and (0, 3) and positive on (3,00), so f is
(=]

CD on (—00,0) and (0,3) and CU on (3, 00). IP at (3, 2)

z> _($2+3)—3_ 3
z22+3° 243 22+ 3

17. y = f(z) = A. D =R B, y-intercept: f(0) = 0; z-intercepts:

flz)=0 & z=0 C. f(—z)= f(z),so f is even; the graph is symmetric about the y-axis.

2

D. =1,s0y = lisaHA. No VA. E. Using the Reciprocal Rule,

wBI:iI:loo 2+ 3
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19.

21,

3. -2z 6x
(@2 +3)*  (a2+3)

f(z)=-

5. /(@) >0 & z>0and f'(x) <0 < =z <0,s0 fisdecreasing

on (—o0,0) and increasing on (0, 00). F. Local minimum value f(0) = 0, no local maximum.

(2> +3)2-6—6z-2(z+3) 2

G. f'(z) [(«? + 3)2]2 H. y y=1
_6(z® +3)[(z* + 3) — 45°]
- (2% +3)*
_ 6B -32%)  -18@+1)(z—1) SEANpAT)
(@43 (@ +3)° 0,0 >

F'(x) is negative on (—oo, —1) and (1, 0o) and positive on (—1, 1), so f is CD on (—oo, —1) and (1, co0) and

CUon (—-1,1). IPat (£1, })

y= f(x) =x+5—x A. Thedomainis {z |5 —z > 0} = (—o0,5] B. y-intercept: f(0) = 0;

z-intercepts: f(z) =0 < =z =0,5 C.Nosymmetry D. No asymptote

- f _ 10 — 3z
E f@)=z-36-2)"2(-1)+(B-2)"? 1=106-2)"* [~z +2(6— =) = i >0 &
& < L 5o f is increasing on (—o0, 22) and decreasing on (42, 5).
F. Local maximum value f(32) = %J\/i— ~ 4.3; no local minimum H. <g 10\/3)
y 3079
G. f"(a) = 2(5 — z)*/2(—3) — (10 — 3z) - 2?{%)(5 —2)7Y2(~1)
(2v6—=z)° >
(5—2)"?[—6(5 —x)+ (10—~ 3z)] 3z —20

- 4(5 — x) T 4(5—2)3/?

f"(x) < 0forz < 5,s0 fis CD on (—o0,5). No IP

y=f(z)=+vz>+1-2 A. D=R B. No z-intercept, y-intercept = 1 C. No symmetry

D. lim (\/:r2—|—1~—9c) = oo and

T—— 00

Vet +1l4z 1
lim (Va2 +1—2) = lim (V2?2 +1—12) —— = lim ——=—=——— =0,
:z:—»oo( ) m—»oo( )\/(132—{—1—{—12 w—>oo4/w2+1+m

o $2+1
oy DismHA: B Fila) = e ] i = H. y
y=0lsa '@ = 7t T T

Ff'(x) < 0,s0 fis decreasing on R. F. No extreme values

1 . A
G. f'(z) = W > 0,s0 fisCUonR. NolIP N




23.

25.
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y=f(z)=z/Vvz?+1 A. D=R B. y-intercept: f(0) = 0; z-intercepts: f(z) =0 = z=0

C. f(—z) = —f(z), so f is odd; the graph is symmetric about the origin.

D, lim f(z) = lim ——2e = lim —2% = lim /L S S
z— 00 z—00 /2 + 1 z—00 \/$2+1/$ z— 00 \/m/1/x2 Z—00 /1_}_1/1}2
1+0
and
lim f(z)= lim ———== lm ——Xt—— = lim
z——00 z— —00 m T——00 \/132_-f'1/fl7 z— —00 m/(_\/ﬁ)
= lim . = L =-1
zo=o0 —\/1+1/22 —v1+0
soy = %1 are HA. No VA.
2z
N . —==
E. fl(z)= S 2va?+1 _ 2’ 4l-at L > 0 for all z, so f is increasing on R
PTG EDE T @y @+ ) ’ gons
F. No extreme values H. y
y=1
- -3
G. f”(:r:) = —%(I2 + 1) 5/2 L 2r = Zm—lm)?/-z-, SO f”(f) > Ofor
©.0)
z < 0and f”(x) < 0forz > 0. Thus, f is CU on (—o0,0) and S=-i

CD on (0, 00). IP at (0, 0)

y=flxy=v1—2z2/xr A D= {a:

161

lz| <1,z # 0} = [~1,0) U (0,1] B. z-intercepts =1, no y-intercept

1= 22 V-
C. f(—z) = —f(x), so the curve is symmetric about (0,0). D. lim Vo= o, lim e ]
z—07T z z—0" x
2 2 2
s b (V1 —2%) —VT—a? 1 . .
sox=0isaVA. E. f'(z) = 2 DY < 0, so f is decreasing on (—1,0)
and (0,1). FE. No extreme values H. y
G. f( )——ﬁ’?2—>0 & —1< <—\/z
T S ey A _
0 1
0<z<q/%s0fisCUon (—1,—\/§> and (0,\/5) and CD on

(=/2.0) and ({/2,1). Pat (/2,4 ;)
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21.

29,

31.

y=f@)=2—32z"Y> A D=R B. y-ntercept: f(0) = 0; z-intercepts: f(z) =0 = z=3z'3 =
=2z = 2 -2Tz=0 = «(@*-27)=0 = z=0,£3V3 C. f(~z) = —f(z),so f is odd;

2/3 _
the graph is symmetric about the origin. D. No asymptote E. f'(z) =1—-z" 23 =1— —zl—— el -1
2273 2273

f'(z) > 0 when |z| > 1and f'(z) < 0 when 0 < |z| < 1, so f is increasing on (—oo, —1) and (1, o), and

decreasing on (—1, 0) and (0, 1) [hence decreasing on (—1, 1) since f is H. ( 2)3’
-1,
(3v3,0)
[

continuous on (—1,1)]. K. Local maximum value f(—1) = 2, local

0 x
minimum value f(1) = -2 G. f’(z) = 227/® < O whenz < 0 (-33,0) Ty

and f”(z) > 0 when z > 0, so f is CD on (—o0, 0) and CU on (0, co).

IP at (0,0)

y=flr)=z++/|z] A. D=R B. z-intercepts 0, —1; y-intercept 0 C. No symmetry
D. lim (:c+ |m|) =00, lim (m—l— |:c\> = —00. No asymptote E. Forz >0, f(z) =z++/z =

f’(a:)zl—l—ﬁ>0,s0fincreaseson(0,oo).For:r<O,f(m):m+\/_——5 = fllzy=1

1
— >0
& 2y/—z>1 & -z>21 & z<—1 sofincreaseson (—oo,—1) and decreases on (-3,

W
0).

F. Local maximum valuef(—3) = %, local minimum value f(0) = 0 H. y
G. Forz >0, f"(z) = —12z7%? = f’(z) < 0,50 fisCDon (—%, %)

(0,00). Forz < 0, f"(z) = —(-z)™%% = f"(z) <0,s0 fis

CD on (—0,0). NoIP

y= f(z) =3sinz —sin®z A. D =R B. y-intercept: f(0) = 0; z-intercepts: f(z) =0 =

sinz (3 —sin®z)=0 = sinz=0 [since sinz<1<3] = z=nmnaninteger.

C. f(—z) = —f(x), so f is odd; the graph (shown for —27 < z < 2x) is symmetric about the origin and periodic
with period 2. D. No asymptote E. f'(z) = 3cosz — 3sin? zcosz = 3cosz (1 — sin®z) = 3cos’ z.
f(z)>0 & cosz>0 & z€ (2nm— %,2nm + §) for each integer n, and f'(z) <0 &

cosz <0 & z€ (2nm+ %, 2nm + ) for cach integer n. Thus, f is increasing on (2nm — 3, 2nw + §)

for each integer n, and f is decreasing on (2nm + £, 2nmw + 2 for each integer n.
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F. f haslocal maximum values f(2nn + 3 ) = 2 and local minimum values f(2nm + 3F) = —2.
G. f"(x) = —9sinzcos’ z = —9sinz (1 — sin’z) = —9sinz (1 —sinz)(1 +sinz). f'(z) <0 <
sinz > 0andsinz #£1 & € (2nm,2nm + 3) U (2nm + %, 2n7 + ) for some integer n.

f'(z) >0 & sinz<Oandsinz #+1 & z€((2n—-1m, (2n— 17+ Z)U((2n — )7+ %, 2nm)

for some integer n. Thus, f is CD on the intervals (2nm, (2n + 3)7) and  H. " (Z2)
((2n+ )7, (2n + 1) m) [hence CD on the intervals (2nm, (2n + 1) )] /\ T o
for each integer n, and f is CU on the intervals ((2n — 1), (2n — 3)m) 2 y . \‘/ *
and ((2n — %), 2n) [hence CU on the intervals ((2n — 1), 2nr)] for - % -2) K

each integer n. f has inflection points at (n, 0) for each integer n.

.y =f(z)=xtanz, -5 <z <% A D=(-%,%) B.Interceptsare0 C. f(—z)= f(x), sothe curveis

symmetric about the y-axis. D, lim ztanz =ocoand lim Lz tanz = oo, soz = 7 and

z—(m,'2)~ z——(7/2)
z=—ZareVA. E. f'(z) =tanz+zsec’z>0 & 0<z<3, H. Y
so f increases on (0, %) and decreases on (—%,0). x=-x x=Z
F. Absolute and local minimum value f(0) = 0.
G. y”=2sec2a:+2a:tanxsec2ac>Ofor—g <z < %,s0fisCU 0 P 2

on(—%,%).Nolp

y=f(z)=1z-sinz,0<z<3r A. D=(0,3r) B. Noy-intercept. The z-intercept, approximately 1.9,
can be found using Newton’s Method. C. No symmetry D. No asymptote E. f'(z) = % —cosz >0 &

1 ™ 57 7 . B T 8w T .
cosz<i & Z<az<5orT <ax<3m sofisincreasingon (%, %) and (I, 3r) and decreasing
on (0,%) and (3£, Z%). F. Local minimum value f(%) = % — % H 7

local maximum value f(3F) = 3% + ¥2 Jocal minimum value

f(%):%’-—? G. f'(z) =sina >0 & O0<z<mor

27 < z < 3m,so f is CU on (0, 7) and (2, 3m) and CD on (, 2).

IPs at (7, 3) and (27, 7).
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37.

39.

y = f(z) =sin2z —2sinz A. D =R B. y-intercept = f(0) =0. y =0 <
2sinx = sin2z = 2sinzcosz &
C. f(-=)

Note: f is periodic with period 27, so we determine E-G for -7 < z < 7.

sing =0orcosz =1 < x = nr (z-intercepts)

—f{x), so the curve is symmetric about (0, 0).
D. No asymptotes

E. f/(z) = 2cos2z — 2cosz =2(2cos’w — 1 —cosz) = 2(2cosz + 1)(cosz — 1) >0 & cost < —%

— 2T 27 is increasi 2% 2 i —2m 27w
& —w<z<—ForF <z <mso fisincreasing on (—m, —2T), (2%, 7) and decreasing on (—2Z, ).
F. Local maximum value f(—28) = 38, H. Y
— _ 338

local minimum value f %")

2

G. f"(z) = —4sin 2z + 2sinz = 2sinz (1 — 4cosz) = 0 when

—a [\ 2z[r %
3

—-11

@ =0,%morcosz = 7.If @ = cos™" %, then f is CU on (~a, 0) and

(o, 7) and CD on (—, —a) and (0, cv).

IPs at (0, 0), (£, 0), (a, 3 815), (—a, 3 815).

when

sin x cose#1  ging  l—cosx sinz(l—cosz) 1—cosz

1+cosx 1—cosz sinx

y = f(z)

= cscx — cotx

1+ cosz sin?

A. The domain of f is the set of all real numbers except odd integer multiples of 7. B. y-intercept: f(0) = 0;

z-intercepts: z = nm, n an even integer. C. f(—xz) = —f(x), so [ is an odd function; the graph is symmetric

about the origin and has period 27. D. When n is an odd integer, lim f(z) =ocoand lim f(z) = —oo,

z—(nmw)~ z—(nw) T
so = nr is a VA for each odd integer n. No HA.
. (14 cosx) - cosz — sinz(—sinx) 1+ cosz 1 .
. = . S . 0 for all t
E. f@ (1+ cosz)? (I14+cosz)? 1+4cosz () > Oiforall s exseptiodd

multiples of 7, so f is increasing on ((2k — 1)m, (2k + 1)7) for each integer k. F. No extreme values

" sinx
G. f'(z) =

—m>0 = gsinz >0 = X=—1

H.x=i—37r v

x € (2km, (2k + 1)m) and f"(z) < Oon ((2k — L)m, 2km)

for each integer k. f is CU on (2km, (2k 4 1)) and CD on

((2k — 1), 2k) for each integer k. f has IPs at (2km, 0)

for each integer k.
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M.y=1/(1+e®) A. D=R B. Noz-intercept; y-intercept = f(0) = 3. C. No symmetry
B —zy — 1 __ . —z) _ . . —z _ .
D. mll)n;ol/(1+e )= 45 = land zluﬁlm 1/(1+e7) 0(smcezkr_rlooe ©0), so f has horizontal

asymptotesy =Oandy=1. E. f/(z)=—(1+ e_‘”)_2 (™) =e"/(1+ e"“)z. This is positive for all z,

so f is increasing on R. F. No extreme values

(L+e)’(—e™) —e*@(1+e") (=)

G. f'(z) = H. y
f ( ) (1+C_$)4 y=1
_ e (e ) S
: (1 + e_m)a _/
The second factor in the numerator is negative for z > 0 and positive for 0 x

z < 0, and the other factors are always positive, so f is CU on (—oo, 0)

and CD on (0, 00). f has an inflection point at (0, 3 ).

B.y=f(z)=zlnz A. D=(0,00) B. z-interceptwhenlnz =0 < =z = 1,no y-intercept
C. Nosymmetry D. lim zlnz = oo,

1/
lim zlnz = lim Ll im —= = lim (—z) =0,n0 H
z—0+ z—0t 1/(5 z—0+ —1/332 z—0t

asymptote. E. f'(z) =lnz+1=0whenlnz=-1 & z=e¢ "

f(x)>0 & Iz>-1 & z>e 50 fisincreasing on

1
(1/e, 00) and decreasing on (0,1/e). F. f(1/e) = —1/eis an absolute o *
le,—1/e

and local minimum value. G. f” (z) = 1/z > 0, s0 f is CU on (0, 00).

NoIP

85. y= f(zr)==ze~® A. D=R B. Interceptsare0 C. No symmetry H

1 . P
D. lim ze~® = lim — £ lim — =0,s0y = 0isaHA. o T :
z—00 z—00 € z—o0 %
lim ze™*=-c0 E. fl(z)=e®—ze *=e*(l-2)>0 &
T——0CC

z < 1, so f is increasing on (—o0, 1) and decreasing on (1, 00) .
F. Absolute and local maximum value f(1) = 1/e.

G. f'(z)=e"(x—2)>0 & z>250fisCUon (2, 00)andCD on(—c0,2).IPat (2,2/e?)
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47

49,

51.

y = f(z) = In(sinz)
A. D={zinR|sinz >0} = Ej 2nr, (2n+ 1) 7)

= U (—4m, =3m) U (=27, —m) U (0,7) U (27, 37) U - - -
B. No y-intercept; z-intercepts: f(z) =0 < In(sinz) =0 < sinz=e"=1 & z=2nr+ % for

each integer n.  C. fis periodic with period 2. D.  lim  f(z) = —co and lim. f(z) = —o0, so
z—(2nm)t z—[(2n+1)7]—

the lines z = nm are VAs for all integers n.  E. f'(z) = £22 = cot 2, so f'(z) > 0 when 2n7w < z < 2nm + <
for each integer n, and f’(x) < 0 when 2nm + § < @ < (2n + 1)7. Thus, f is increasing on (2nm,2nm + %) and
decreasing on (2n7r + %, (2n+ 1)) for each integer n. F. Local maximum values f (2nﬂ' + %) =0, no local

minimum.  G. f”(z) = ~esc® z < 0,50 f is CD on (2n7, (2n + 1)7) for each integer n. No IP

H. ¥

—4m —371 27 -w 7 27 3w 4w

ABABARARS:

y=f(z) = ze® A.D=R B. Intercepts are 0 C. f(—z) = — f(x), so the curve is symmetric
about the origin. D. lim ze™™ = lim —s & lim ~ = 0,50y = 0isaHA.
) z—rtoo ¥ z-—>too Qre®

E. flz) =e ™ — 222" = e_zz(l -22") >0 & 2*<i & |7 < 5,50 f is increasing on
(—%7 %) and decreasing on (—oo, —%) and (%, oo) . E Local maximum value f(%) = 1/4/2e, local

minimum value f(—71—§) = —1A2 G. f'(z) = ~2ze~" (1-22%) — dze=" = 2pe~"" (22 - 3) >0

& ar>\/§0r~\/§<m<0,sofisCUon1/\/_—3_,00) H. Y (ﬁ _\/122>
s s T
and (—\/g, [)) and CD on (—oo, —\/g) and (O, \/g)
0 X
P are (0, 0) and (+1/3, i\/ge—s/z).
y=f(x)=e**+e* A D=R B. y-intercept= f(0) = 2; H. y
no z-intercept C. No symmetry D. No asymptotes
E. f'(z) =3¢ — 27,50 f'(z) >0 <« 3% > 2%
[multiply by e**] < €5 > 2 & 5z>lhi &
17,2 i ' 11,2 local / \(0 2)
z > zln§ ~ —0.081. Similarly, f'(z) <0 < z<3$ln3. minimum ’
f is decreasing on (—oc0, £ In Z) and increasing on (£ In 2, 00). 0 ot

F. Local minimum value f(2 In 2) = (%)3/5 + (%)_2/5 ~ 1.96; no local maximum.

G. f"(z) =9e* +4e >, s0 f"(z) > Oforall z, and f is CU on (—c0, 00). No IP
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w , WL , WI? , W 5, 2
53_ - — —_ 9 = —_— —— — Yy
V="%uE1" T 1E1® T 4Bt oapr® @ —2Le+I7) I
— —W 2 2 2 ; s
= 5151 z— L) =cz*(z — L) 0 L2 L x
where ¢ = — W is a negative constant and 0 < z < L. We sketch
= T24El g ST

f(@) = ee®(@ — LY forc = —1. f(0) = f(L) = 0.

f'(z) = cz®[2(x — L)) + (z — L)*(2¢z) = 2cz(z — L) [z + (x — L)] = 2cz(z — L)(2x — L). So for
0<z<Lf(z)>0 & z(z—L)2z—L)<0(incec<0) & L/2<z<Landf(z)<0 &
0 <z < L/2. So f is increasing on (L/2, L) and decreasing on (0, L/2), and there is a local and absolute
minimum at (L/2, f(L/2)) = (L/2,cL*/16).

fi(z) =2¢c[z(z-L)2z - L)] =

() =2¢[l(z — L)(2z — L) + z(1)(2x — L) + z(z — L)(2)] = 2¢(62® — 6Lz + L*) =0 «

V12I2
= 61;—:*:1—2& S %L + 3§L, and these are the z-coordinates of the two inflection points.
2
55. vy = d : 11 Long division gives us: z—1
x
x+1| 2 41
:c2+:c
—z+1
—z—1
2
) 2
_ oz +1 2 2z
Thus, y = f(z) = poara —x—l—i—x—_i_—landf(m)—(:c—l)—m— 1_*_1 fforx #0] —0
T

as z — £oo. So the line y = z — 1 is a slant asymptote (SA).

3 _ 5.2
5.y = %3—5 Long division gives us:
2z —2
222 4+ ¢ — 3|42% — 222 +5
423 + 222 — 6z
— 4z% + 6z +5
— 422 -2z +6
8 —1
4z% — 222 +5 8r—1
Thus, y = f(z) 2%+ -3 * +2x2+x—3and
8 1
fl@)—(2z-2)= bo—1 _ 2z _o? [forz #0] — 0asz — *o0. Sotheliney = 2z — 2is
S 2?+z-3 5, 13 ’ v
r x?

a SA.
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—2z° + 5z — 1
8.y=flo)= —F—F—=-2+2+5—7 A D={scR|z#3}=(-00,3)U( )
B. y-intercept: f(0) = 1; z-intercepts: f(2) =0 = —22*+5x—-1=0 = z= -—5—:-&——4\/17

x =~ 0.22,2.28. C. No symmetry

D. lim f(z —ooand lim z 20, so:v——lsaVA
z—(1/2)~ (=) = z—(1/2)+ fe) =

hm [f(z) = (—z+2)) = lirin . 1=0,sotheliney=—a:-+—2isaSA.

2z —
2
E. f'(z) = -1 — ——— < Oforz # %, so f is decreasin, H. o 7}
f(=z) 2z~ 1) # 350 g o
on (—oo, 1) and (3,00). F. No extreme values
G flx)=-1-222-1)"? =
0 x

F1(@) = —2(~2)(2z — 1)3(2) = —>—, 50 (@) > 0 when

(2z—1)

x> 1 and f(z) < 0whenz < 3. Thus, f is CU on (3, 00) and CD
on (—oo, 3). NoIP

6. y = f(z) = (z® +4) /s =z +4/x A D={r|z#0}=(—00,0)U(0,00) B. No intercept

C. f(—z) =—f(z) = symmetry about the origin D. lim (z+4/z) = ocobut f(z) —z=4/z — Oas

T — +00,50 Yy = z is aslant asymptote. lim (z 4 4/x) = oo and H. M9 2
x—0T / //
lim (z+4/z)=—oco,s0x=0isaVA. E. f'(z)=1-4/2z>>0 /””y=x
20~
o 0 X

& 2°>4 & z>2o0rz < —2,s0 fisincreasing on (—o00, —2)

and (2, 0o) and decreasing on (—2,0) and (0, 2).

F. Local maximum value f(—2) = —4, local minimum value f(2) =4
G. f'(z)=8/2®*>0 <« 2 >0s0 fisCUon (0,00)and CD
on (—o0,0). NoIP

223 + 22 +1 -2z

63.y=f(3:)=——mT+—1—:2x+1+$2+1

A. D =R B. y-intercept: f(0) = 1; z-intercept: f(z) =0
= 0=22%+22+1=(z+1)(22* —z+1) = z=-1 C.Nosymmetry D. NoVA

tim [f(@)— (e 4+D)] = lim e = m 2T

ey wij_w 17122 = 0, so theline y = 2z + 1 is a slant asymptote.

(2 + 1)(=2) — (—22)(2z) _ 2(z* +22° + 1) — 22° ~ 2 + 4a?
(x2 4 1)2 - (22 4 1)2

2z +62°  2z%(z®+3)

(22 4+ 1)2 - (22 +1)2

E. fliz) =2+
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so f'(z) > 0if x # 0. Thus, f is increasing on (—oo, 0) and (0, co). Since f is continuous at 0, f is increasing
onR. F. No extreme values

(2% +1)% - (82° 4 12z) — (2z* + 627%) - 2(x® + 1)(2z) -

G. f"(z) =

[(z2 +1)?2)?
_ 4a(a® + D)[(2® +1)(20® +3) — 22 ~ 627
($2 + 1)4 ©,1)

_ 4z(-2?+3) >

s Z
OV NCELY A S
so f’(z) > 0forz < —/3and 0 < = < v/3, and f(z) < O for

—vV3<z<0andz >3, fis CUon (—oco0,—/3) and (0,v3),
and CD on (—+/3,0) and (v/3,00). There are three IPs: (0,1), (—v/3,—2+/3 + 1) &~ (~1.73,-1.60), and

(V3,23 + 1) ~ (1.73,3.60).

1 1+2°~-1_ 2°
— = —_ -1 / =1 — = =
Ly=f(z)=z—tan" "z, f'(z) =1 T3 22 1522 122
F(z) = (1 + 2?)(2z) — z?(2x) _ 2z(1 4 z* — z%) __ 2%
(1+22)2 (14 z2)? (1 +22)2°

i V] = | A 1yy=z_= _ —z— X
wlingo[f(w)—(x—g)]ulingo(z tan'z) =% —Z = 0,50y =z — § isa SA. Also,

. . s -1
Jim [f(z) = (z+3)] = lim (~5 —tan" z) y
- _(_m) =9 2
-3) s
soy = + & isalso a SA. f'(x) > 0 for all z, with equality <«
B o |, x
z = 0, so f is increasing on R. f”/(z) has the same sign as z, so f is CD . “y=x-%

on (—00,0) and CU on (0, 00). f(—z) = —f(x), so f is an odd function;

its graph is symmetric about the origin. f has no local extreme values. Its
only IP is at (0, 0).

2 2

Y o oy=22 T Now
a? b2 a

b b b v:z:z—a2+a: b *(12
i —Jx2 —q2 — — =—-1li Vr2 — g2 — -_— == 1 —— —
mhm [ T .a CB] lim ( Zz a ZII) 5 5 lim 0,

which shows that y = gx is a slant asymptote. Similarly,

b b b —a? b
; e gz (-2 - 2. lm — = = e
zhm [ " 2 —a ( ax)] - zhm g R 0,s0y aaslsaslant asymptote.
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s 3 i 33'4 +1 (U4 . 1 . s 3
69. lim [f(z)—2%] = lim —— = lim = =0, so the graph of f is asymptotic to that of y = z°.

z—Fo0o xz—+oo0 T x z-otoo I

A. D={z |2 5#0} B.Nointercept C. fis symmetric about the origin. D. lim (:c3 + l) = —oo and
x

x—0~

. 1 : . . .
11151+ <x3 + E) = 00, 80 ¢ = 0 is a vertical asymptote, and as shown above, the graph of f is asymptotic to
xT—

thatofy = 2°. E. f'(z) =32 -1/2>>0 & *>1 & H.

|| > %, so f is increasing on (—oo, ——\4}—5) and (%,oo) and

decreasing on ('"4%/5’ O) and (0, _é—g) . F. Local maximum value

f(—%) = —4-375/4 local minimum value f(%) =4.375/4

G. f'(z) =62 +2/2> >0 < x>0,50 fisCUon (0,00) and
CD on (—00,0). No IP

4.6 Graphing with Calculus and Calculators

1. f(z) = 4a* — 322% + 8922 — 952 +29 = f'(z) = 162° — 962> + 1782 — 95 =
f(x) = 482% — 1922 +178. f(z) =0 & w=0.5, 1.60; f'(z) =0 < =z~ 0.92,25,2.58and
"@)=0 << z=a146,2.54

10 1.0
f f! f
0 4 !
\/ J 0I I l4 2.4L
._2 ’

Jz.s
2.4 . L
-0.2 396

From the graphs of f’, we estimate that f' < 0 and that f is decreasing on (o0, 0.92) and (2.5, 2.58), and that
f' > 0and f is increasing on (0.92,2.5) and (2.58, oc) with local minimum values £(0.92) ~ —5.12 and

£(2.58) ~ 3.998 and local maximum value f(2.5) = 4. The graphs of f’ make it clear that f has a maximum and a

minimum near z = 2.5, shown more clearly in the fourth graph.

From the graph of f”/, we estimate that f” > () and that f is CU =
on (—oo, 1.46) and (2.54, 00), and that f < O and £ is CD on f
(1.46,2.54). There are inflection points at about (1.46, —1.40) and . .

(2.54,3.999).

—20
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1 2z — 3 2 z2-3z+24
L f@)=Ve2-3z-5 = f@)=c—--"—-—- = fllo)=-c———"—
flz) =V f(x) 32— 30 _5)P° (=) 922 — 30 57"
3 3 3

A

6

L
(]

1/3

22 -3z -5
= _5”:82—311)—5[ ,

Note: With some CAS’s, including Maple, it is necessary to define f(z) = o7 33
since the CAS does not compute real cube roots of negative numbers. We estimate from the graph of f’ that f is
increasing on (1.3, 00), and decreasing on (—o0, 1.5). f has no maximum. Minimum value: f(1.5) &~ —1.9.

From the graph of £, we estimate that f is CU on {—1.2,4.2) and CD on (—o0, —1.2) and (4.2, c0). IP at

(—1.2,0) and (4.2,0).

283 + 22 +1

= flz)= (@ —:1:2—4m+1)2

z
'f(z)_x3—a:2—4:c+1

2(3z° — 3z* + 52° — 62° + 3z + 4)

f//(IB) = (:z:3 Z 22 —dz + 1)3

3 3 3

" | L U U
-5 5 -5 5 5 5

N i

-3 -3 -3

We estimate from the graph of f that y = 0 is a horizontal asymptote, and that there are vertical asymptotes at

x = —1.7, 2 = 0.24, and = = 2.46. From the graph of f’, we estimate that f is increasing on (—o0, ~1.7),
(—1.7,0.24), and (0.24, 1), and that f is decreasing on (1, 2.46) and (2.46, co). There is a local maximum value
at f(1) = —3. From the graph of f”, we estimate that f is CU on (—o0, —1.7), (—0.506, 0.24), and (2.46, c0),

and that f is CD on (—1.7, —0.506) and (0.24, 2.46). There is an inflection point at (—0.506, --0.192).

m
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1 f(z) =12 —dz+Tcosz, —4<ax <4 f(z)=2z—4—Tsinz = f(x) =2~ Tcosz.
fle)=0 & z=110;f'(z) =0 & =z~-149,-1.07,0r2.89; f'(z) =0 <
z =tcos (%) ~ £1.28.

30 10 0.5

. _1
TN Y 1/

&7

From the graphs of f’, we estimate that f is decreasing (' < 0) on (—4, —1.49), increasing on (—1.49,-1.07)

=5

s

decreasing on (—1.07,2.89), and increasing on (2.89,4), with local minimum values f(—1.49) ~ 8.75 and
f(2.89) =~ —9.99 and local maximum value f(—1.07) ~ 8.79 (notice the second graph of f). From the graph
of f”, we estimate that f is CU (f" > 0) on (—4, —1.28), CD on (—1.28,1.28), and CU on (1.28, 4). There are
inflection points at about (—1.28,8.77) and (1.28, —1.48).

9 f(z) =8z -32-10 = f(z)=24a®—6z = J'(z)=48z—6

40 20 ~9.7

f
A d ’
-15 2 i
[/- J —1 \\ 1 —-0.3 05

-40 -1 —10.5

From the graphs, it appears that f(x) = 82® — 32 — 10 increases on (—oo, 0) and (0.25, 00) and decreases on
(0,0.25); that f has a local maximum value of £(0) = —10.0 and a local minimum value of £(0.25) &~ —10.1; that
fis CUon (0.1, 00) and CD on (—o0,0.1); and that f has an IP at (0.1, —10). To find the exact values, note that
f'(z) = 24a® — 6z = 6x(4x — 1), which is positive (f is increasing) for (—oo, 0) and (i, 00), and negative
(f is decreasing) on (0, %) By the FDT, f has alocal maximum at z = 0: £(0) = —10; and f has a local
minimumat §: f(3) =21 -2 - 10= — 8L, #"(x) = 48z — 6 = 6(8x — 1), which is positive (f is CU) on

D) on

(%, 00) and negative (f is C n (—oo,3). fhasanTPat (1, f(1)) = (3, -4,
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11. From the graph, it appears that f increases on (—2.1, 2.1) and decreases 4.6

on (—3,~2.1) and (2.1, 3); that f has a local maximum of f(2.1) ~ 4.5 (

and a local minimum of f(—2.1) &~ —4.5; that f is CU on (—3.0,0) and B L

CD on (0,3.0), and that f has an IP at (0,0). f(z) = zv9 — 122 =

2
——+ VO~ 2 = i , which is positive

(f is increasing) on ( *f ‘/_) and negative (f is decreasing) on ( -3, 32*/5) and (%@, 3). By the FDT,

2
f has a local maximum value of f (5——2*1—5) = §—2*/—§ /9 - (:%/—5) = 2; and f has a local minimum value of

f(_32 2) = —$ (since f is an odd function). f'(z) = __§_f_$_z +/9-22 =
Fl(z) = 9—22(-22) +2°(3) (9 - z?) % (~20) —z(9— ;;;2)‘1/2 _ T2 29—~z
- N
—3z z2 .1;(23:2 —27)

= ,———g—x2 - (9—$2)3/2 - (9—%2)3/2

which is positive (f is CU) on (—3, 0) and negative (f is CD) on (0, 3). f has an IP at (0,0).

13. (a) f(z) = z® Inz. The domain of f is (0, co).

-0.25

1.75

-0.25

Inz u .. /z . 2\ .
(b) hr{)1+:v Inz = w£0+ a? zl_l,%l+ mryr mli%l+ <— 5 ) = 0. There is a hole at (0, 0).

(c) It appears that there is an IP at about (0.2, —0.06) and a local minimum at (0.6, —0.18). f(z) = z*lnz =
f'(z) =2*(1/z) + (Inz)(2z) = 2z(2lnz+1) >0 & hhz>-1 & z> e'/2 50 f is increasing on
(1/+/e, c0), decreasing on (0, 1/+/€ ). By the FDT, f(1/+/€) = —1/(2e) is a local minimum value. This point
is approximately (0.6065, —0.1839), which agrees with our estimate.

f(z) =z(2/z) + 2lnz+1) =2Inz+3>0 & Ihz>-2 & z>e 2 s fisCUon

(6—3/2700) and CD on (0,e~3/2>. Pis (6—3/2,_3/(2e3)) ~ (0.2231, —0.0747).
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ICEL) Gt

15. has VA at z = 0 and at © = 1 since

f(=)

4 (z —1)
lim f(z) = —oo, lim f(z) = —ocoand lim f(z)= co.
x-—0 z—1— -1+
z+4 (z—3)°
z | 22 [dividing numerator and
f((l}') b 4 . 3
T denominator by z~]
z
_ L+ 4/2)(1 - 3/2)’ . .
= 2@ —1) — 0 as z — o0, so f is asymptotic

to the z-axis. Since f is undefined at z = 0, it has no y-intercept. f(z) =0 = (z+4)(z—-3)* =0 =
z = —4 or z = 3, so f has z-intercepts —4 and 3. Note, however, that the graph of f is only tangent to the z-axis

and does not cross it at x = 3, since f is positive as  — 3~ and as z — 3T

500

. A T

—0.04 —1500 2.5 0 8

From these graphs, it appears that f has three maximum values and one minimum value. The maximum values are
approximately f(—5.6) = 0.0182, £(0.82) = —281.5 and f(5.2) = 0.0145 and we know (since the graph is
tangent to the z-axis at = 3) that the minimum value is f(3) = 0.

22z +1)3 , z(z + 1) (z® + 182% — 44z — 16)

17. f(m) = m = f (l‘) = — (.’L‘ — 2)3(:1: — 4)5 (from CAS).
0.0011 0.00015 5000

g N/\ i

-L5 4 0
2.2 S 32
P— o | \J - J

—0.0002 —0.0001 —2000

From the graphs of f’, it seems that the critical points which indicate extrema occur at x ~ —20, —0.3, and 2.5,
as estimated in Example 3. (There is another critical point at z = —1, but the sign of f’ does not change there.)
(z +1)(z® + 362° + 62" — 628z° + 684z + 672z + 64)
2 .
(z~2)4(z—4)°

We differentiate again, obtaining f"/(x) =

0.00001

0.001 5000
|
2 -
—40 —10 FAY

—0.00001 ~0.001
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From the graphs of f", it appears that f is CU on (~35.3, —5.0), (—1,~0.5), (—0.1,2), (2, 4) and (4, o) and CD
on (—o0, —35.3), (—5.0, —1) and (—0.5, —0.1). We check back on the graphs of f to find the y-coordinates of the
inflection points, and find that these points are approximately (—35.3, —0.015), (—5.0, —0.005), (—1,0),
(—0.5,0.00001), and (—0.1,0.0000066).

sin® sinz [2(1:2 + 1) cosz — zsin x]
19 y = f(z) = —= with 0 < = < 37. From a CAS, ¢’ = and
(=) Va2 +1 (x2 +1)3/2
" (49:4 +62° + 5)cos2 T —dz(z” + 1)sinzcosz — 2z* —22% -3
v = (z? +1)/2 ’
0.75

From the graph of f’ and the formula for y', we determine that 4/ = 0 when = = 7, 27, 3w, or x =~ 1.3, 4.6, or 7.8.
So f is increasing on (0, 1.3), (7, 4.6), and (27, 7.8). f is decreasing on (1.3, 7), (4.6, 27), and (7.8, 37). Local
maximum values: f(1.3) = 0.6, f(4.6) ~ 0.21, and f(7.8) = 0.13. Local minimum values: f(7) = f(27) = 0.
From the graph of f, we see thaty” =0 < =z ~0.6,2.1,3.8,5.4,7.0,0r8.6. So f is CUon (0, 0.6),
(2.1,3.8), (5.4,7.0), and (8.6,3). f is CD on (0.6,2.1), (3.8,5.4), and (7.0, 8.6). There are IP at (0.6, 0.25),
(2.1,0.31), (3.8,0.10), (5.4,0.11), (7.0,0.061), and (8.6, 0.065).

1—el/® 2¢l/® y —2eM7(1 — eM® 4 2¢ + 2ze'/?)
21. y=f(.’E) = ﬁ_—el/—x.FromaCAS,y’ = mandy = 1’4(14—61/2)3 .

f is an odd function defined on (—oo, 0) U (0, 00). Its graph has no z- or y-intercepts. Since lirjrzl f(z) =0, the

z-axis is a HA. f'(z) > 0 for = # 0, so f is increasing on (—oo0, 0) and (0, co). It has no local extreme values.
#(x) = Ofor z ~ £0.417, so f is CU on (—00, —0.417), CD on (—0.417, 0), CU on (0, 0.417), and CD on
(0.417, 00). f has IPs at (—0.417,0.834) and (0.417, —0.834).
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23. (a) f(z) = 2/° (b) Recall that a® = €®'"%, lim #*/°® = lim e(/®1"= Aggz — ot
-0+ z— 0+
2 1
) —n;% — —00,50 zM/* = e(/®)1n% _, (), This indicates that there is

a hole at (0, 0). As & — oo, we have the indeterminate form co®.

0 + 8
lim 2% = lim /% byt lim Lt L =0, 50

T—00 ZT—00 r—00 T T— 00

lim 2Y/® = % = 1. This indicates that y = 1 is a HA.

T OO0

(c) Estimated maximum: (2.72, 1.45). No estimated minimum. We use logarithmic differentiation to find any

. % + (1nm)<—%> =

’
critical numbers. y = 2*/* = Iny = %lnm = y? .

8|~

y’=w1/’(1_minm)=0 = Ihz=1 = z=eFolO<z<ey >0andforz>ey <0,s0

f(e) = e!/* is alocal maximum value. This point is approximately (2.7183, 1.4447), which agrees with our

estimate.
) o1 From the graph, we see that f”(z) = O at z ~ 0.58 and z ~ 4.37.
£ ] Since f” changes sign at these values, they are z-coordinates of
0 / J 6 inflection points.
~o1
25, 2 4 15
f/l
f £
0 2%

B }

1.2 -4 -15

1
0
From the graph of f(x) = sin(z + sin 3z) in the viewing rectangle [0, ] by [—1.2, 1.2], it looks like f has two
maxima and two minima. If we calculate and graph f’(z) = [cos(z + sin 3z)] (1 + 3 cos 3z) on {0, 27],
we see that the graph of f’ appears to be almost tangent to the z-axis at about z = 0.7. The graph of

f" = — [sin(z + sin 3x)] (1 + 3 cos 3z)* + cos(x + sin 3z)(—9 sin 3z) is even more interesting near this z-value:

it seems to just touch the x-axis.
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0.1 0.002 1

w0 N V) N |
\\/ o =27 [\
UMW

-03 ~0.004 0.9997 ) —12

2

Mo |
i

If we zoom in on this place on the graph of f”/, we see that f” actually does cross the axis twice near z = (.65,
indicating a change in concavity for a very short interval. If we look at the graph of f’ on the same interval, we see
that it changes sign three times near = 0.65, indicating that what we had thought was a broad extremum at about
2 = 0.7 actually consists of three extrema (two maxima and a minimum). These maximum values are roughly
£(0.59) =1 and f(0.68) = 1, and the minimum value is roughly f(0.64) = 0.99996. There are also a maximum
value of about £(1.96) = 1 and minimum values of about f(1.46) = 0.49 and f(2.73) = —0.51. The points of
inflection on (0, ) are about (0.61,0.99998), (0.66,0.99998), (1.17,0.72), (1.75,0.77), and (2.28,0.34). On
(m,2), they are about (4.01, —0.34), (4.54, —0.77), (5.11, —0.72), (5.62, —0.99998), and (5.67, —0.99998).
There are also IP at (0,0) and (, 0). Note that the function is odd and periodic with period 27, and it is also

rotationally symmetric about all points of the form ((2n + 1)7, 0), n an integer.

f(z) = 2* + cz® = 2 (¢ + ). Note that f is an even function. For ¢ > 0, the only z-intercept is the point (0, 0).
We calculate f'(z) = 42® + 2cz = 4z (2* + 3¢) = f"(z) =122% 4+ 2c. If ¢ > 0, z = 0 is the only critical
point and there is no inflection point. As we can see from the examples, there is no change in the basic shape of the
graph for ¢ > 0; it merely becomes steeper as ¢ increases. For ¢ = 0, the graph is the simple curve

y = z*. For ¢ < 0, there are z-intercepts at 0 and at /—c. Also,

there is a maximum at (0,0), and there are minima at

(:I:, /-3¢, —%cz). As ¢ — —00, the z-coordinates of these minima

get larger in absolute value, and the minimum points move

downward. There are inflection points at (:lq [—%c, —%c2) , which

also move away from the origin as ¢ — —00.
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29,

31

3.

¢ = 0 is a transitional value — we get the graph of y = 1. For ¢ > 0, we see that there is a HA at y = 1, and that the
graph spreads out as ¢ increases. At first glance there appears to be a minimum at (0, 0}, but f(0) is undefined,
so there is no minimum or maximum. For ¢ < 0, we still have the HA at y = 1, but the range is (1, co) rather
2
than (0,1). We also havea VA atz = 0. f(z) = e~/ = fllz)= e=e/= (—C) =

3
_ 2¢(2c—3z?)

() e f'(z) # 0 and f'(z) exists for all  # 0 (and 0 is not in the domain of f), so there are no
xT eC x
maxima or minima. f”(z) =0 = = /2¢/3,s0ifc > 0, the inflection points spread out as c increases,

and if ¢ < 0, there are no IP, For ¢ > 0, there are IP at (j: 2¢/3,e7%/ 2) . Note that the y-coordinate of the IP is

constant.

Note that ¢ = 0 is a transitional value at which the graph consists of the z-axis. Also, we can see that if we

substitute —c for ¢, the function f(z) = T as will be reflected in the z-axis, so we investigate only positive
: z
values of ¢ (except ¢ = —1, as a demonstration of this reflective property). Also, f is an odd

function. lirin f(z) =0, s0 y = 0 is a horizontal asymptote for all c. We calculate
(14 *2®)c — cz(2c%z) _ c(Pz” — 1)
(1 + c222)? (14 c2x2)?

is an absolute maximum value of f(1/c) = % and an absolute minimum value of f(—1/c) = —%. These extrema

fi@) =

f2)=0 & Fa*—1=0 < z=+1/c Sothere

have the same value regardless of ¢, but the maximum points move closer to the y-axis as c increases.

(—2c%z) (1 + 02332)2 — (=c®2% + ¢)[2(1 + Pa?) (2¢°x)]

f(z) = a +c2w2)4
_ (—2¢%z) (14 c*z?) + (*2® — ¢) (4c*z) _ 2c%z(c?z® - 3)
(14 2z2)® O (14c222)?

f"(z) =0 < x=0or++/3/c,so there are inflection points at (0, 0)
and at (£v/3/c, £v/3/4).

Again, the y-coordinate of the inflection points does not depend on ¢, but as ¢ increases, both inflection points

approach the y-axis.

f(x)=cx+sine = f(z)=c+cosz => f'(z)=—sinz
f(=z) = —f(z), so f is an odd function and its graph is symmetric with respect to the origin.
f(z) =0 < sinz = —cz, so 0 is always an z-intercept.

f'(z) =0 & cosx = —c, so there is no critical number when |c| > 1. If |¢| < 1, then there are infinitely
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many critical numbers. If z1 is the unique solution of cos z = —c in the interval [0, 7], then the critical numbers are
2nm £ z1, where n ranges over the integers. (Special cases: When ¢ = 1, 1 = 0; when ¢ = 0, 2 = %; and when
c=—-1,z1=m)

f'(z) <0 & sinz > 0,s0 fis CD on intervals of the form (2nm, (2n 4 1)x). f is CU on intervals of the
form ((2n — 1), 2nm). The inflection points of f are the points (2nm, 2nmwc), where n is an integer.

If ¢ > 1, then f’(z) > O for all z, so f is increasing and has no extremum. If ¢ < —1, then f'(z) < 0 for all ,
so f is decreasing and has no extremum. If |¢| < 1, then f'(x) >0 < cosz > —c < x isin an interval of
the form (2n7 — 1, 2nm + 1) for some integer n. These are the intervals on which f is increasing. Similarly, we
find that f is decreasing on the intervals of the form (2n7 + z1,2(n + 1)m — z1). Thus, f has local maxima at the
points 2n7 + z1, where f has the values ¢(2n7 + 21) + sinz; = ¢(2n7w + 21) + /1 — ¢2, and f has local
minima at the points 2nm — 21, where we have f(2nm — 1) = ¢(2nT — 1) —sinz; = ¢(2n7 — 21) — V1 — 2.

The transitional values of ¢ are —1 and 1. The

inflection points move vertically, but not horizontally,
when ¢ changes. When |c| > 1, there is no extremum. For
le| < 1, the maxima are spaced 27 apart horizontally, as

are the minima. The horizontal spacing between maxima

and adjacent minima is regular (and equals ) when ¢ = 0,

but the horizontal space between a local maximum and the

nearest local minimum shrinks as |c| approaches 1.

Ifc <0,then lim f(z)= lim Z B im = =0, and lim f(z) = oc.
z——00 z——o0 €% z——o0 cec® T—00
Ifc>0,then lim f(x) = —00,and lim f(z) LA LI 0.
T —00

If ¢ = 0, then f(z) = z, so ligl f(z) = Foo respectively.
L= 00

So we see that ¢ = 0 is a transitional value. We now exclude the case ¢ = 0, since we know how the function

cx

behaves in that case. To find the maxima and minima of f, we differentiate: f(z) = ze~ =
fl(@)=x(—ce ) + e =(1—cx)e . ThisisOwhenl —cz =0 < =z =1/c Ifc <0 then this

represents a minimum value of f(1/c) = 1/(ce), since f'(x) changes from negative to positive at z = 1/c;

and if ¢ > 0, it represents a maximum value. As |c| increases, the 3

maximum or minimum point gets closer to the origin. To find the inflection _5l= -1

points, we differentiate again: f’'(z) = e “*(1 —cx) = 0

f(z) = e (—c) + (1 — cx)(—ce™ ") = (cz — 2)ce™ . This -3 SRRazsazd 3
4

changes sign whencz —2=0 < 1z = 2/c. So as |c| increases, the ,’:"I

points of inflection get closer to the origin. ,"
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31. (a) f(z) = cz* — 22% +1. Forc = 0, f(z) = —2z° + 1, a parabola whose vertex, (0, 1), is the absolute
maximum. Forc > 0, f(z) = ca* — 2¢* + 1 opens upward with two minimum points. As ¢ — 0, the minimum
points spread apart and move downward, they are below the z-axis for 0 < ¢ < 1 and above for ¢ > 1. For

¢ < 0, the graph opens downward, and has an absolute maximum at z = 0 and no local minimum.

(b) f'(x) =4cz® — 4z = 4cx(z® — 1/c) (c#0).Ilfc < 0,0is the
only critical number. f”(z) = 12cz® — 4, so f”(0) = —4 and there
is a local maximum at (0, f(0)) = (0, 1), which liesony = 1 — z°.

If ¢ > 0, the critical numbers are 0 and +1//c. As before, there is a
local maximum at (0, £(0)) = (0, 1), which liesony = 1 — 22
F"(£1/\/c) =12 — 4 =8 > 0, so there is a local minimum at

z = +1/y/c. Here f (£1/y/c) =c(1/c®) —-2/c+1==1/c+ 1.
But (+1/+/c,—1/c+1)liesony = 1 — % since N
1-(£1/ve)’=1-1/c.

4.7 Optimization Problems

1. () ‘We needn’t consider pairs where the first number
First Number | Second Number | Product . . .
is larger than the second, since we can just

1 22 22
9 921 4 interchange the numbers in such cases. The
3 20 60 answer appears to be 11 and 12, but we have
4 19 76 considered only integers in the table.
5 18 90
6 17 102
7 16 112
8 15 120
9 14 126

10 13 130

11 12 132

(b) Call the two numbers z and y. Then  + y = 23, so y = 23 — z. Call the product P. Then
P = zy = (23 — =) = 23z — z°, so we wish to maximize the function P(z) = 23z — z>. Since
P'(z) =23 — 2z, wesee that P'(z) =0 < =z = 2 = 11.5. Thus, the maximum value of P is
P(11.5) = (11.5)® = 132.25 and it occurs when z = y = 11.5.

Or: Note that P (z) = —2 < O for all z, so P is everywhere concave downward and the local maximum at

x = 11.5 must be an absolute maximum.
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2 —
. The two numbers are z and —1—2—0 where z > 0. Minimize f(x) = x + 1~0—(—) flz)=1- L1 m_ﬂ
xZ

The critical number is ¢ = 10. Since f'(z) < 0 for 0 < z < 10and f'(z) > 0 for z > 10, there is an absolute

minimum at 2z = 10. The numbers are 10 and 10.

. If the rectangle has dimensions = and y. then its perimeter is 2z + 2y = 100 m, so y = 50 — z. Thus, the area is
A = zy = (50 — z). We wish to maximize the function A(z) = z(50 — z) = 50z — z2, where 0 < x < 50.
Since A'(z) = 50 — 2¢ = —2(z — 25), A'(z) > 0for 0 < z < 25 and A’(z) < 0 for 25 < z < 50. Thus, A has

an absolute maximum at z = 25, and A(25) = 25 = 625 m®. The dimensions of the rectangle that maximize its

area are * = y = 25 m. (The rectangle is a square.)

. (a)

50 100 120

250

125 75

The areas of the three figures are 12,500, 12,500, and 9000 ft*. There appears to be a maximum area of at least
12,500 ft°.

(b) Let z denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides. x

(c) Area A = length X width =y - =

(d) Length of fencing = 750 = 5z + 2y = 750

©5z+2y="750 = y=375—-3z = A(z)=(375- 3z)z =375z — 32°

(f) A'(z) =375 -5z =0 = x="75. Since A”(z) = —5 < 0 there is an absolute maximum when = = 75.

Theny = 3% = 187.5. The largest area is 75(2[2) = 14,062.5 ft>. These values of x and y are between the

values in the first and second figures in part (a). Our original estimate was low.

zy = 1.5 x 10%, so y = 1.5 x 10%/. Minimize the amount of fencing,
which s 3z + 2y = 3z + 2(1.5 x 10%/z) = 3z + 3 x 10%z = F(z).

F'(z) =3 — 3 x 10%2? = 3(z” — 10°) /z°. The critical number is

y z =10% and F'(z) < 0for 0 < = < 10 and F’(z) > 0 if z > 103, so
the absolute minimum occurs when z = 10 and y = 1.5 x 10°.

The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.
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1.

13.

15.

17.

Let b be the length of the base of the box and A the height. The surface area is 1200 = b2 + 4hb =

h = (1200 — b?)/(4b). The volume is V = b*h = b°(1200 — b*) /4b = 300b — b%/4 = V'(b) = 300 — 2b°.
V'e)=0 = 300=230" = b =400 = b=+/400 = 20. Since V'(b) > 0for 0 < b < 20 and
V'(b) < 0for b > 20, there is an absolute maximum when b = 20 by the First Derivative Test for Absolute
Extreme Values (see page 334). If b = 20, then h = (1200 — 20%) /(4 - 20) = 10, so the largest possible volume

is b*h = (20)%(10) = 4000 cm®.

10 = (2w)(w)h = 2w?h, so h = 5/w*. The cost is

5 C(w) =10(2w?) + 6[2(2wh) + 2hw] + 6(2w?)

w = 32w* + 36wh = 32w’ + 180/w
2w

C'(w) = 64w — 180/w® = 4 (16w® — 45) /w® = w= {/Listhe

critical number. C’(w) < 0 for 0 < w < §/ 42 and €’ (w) > 0 for w > {/42. The minimum cost is

C(Q/;Ig) = 32(2.8125)*/3 + 180 /1/2.8125 ~ $191.28.

The distance from a point (x,y) on the line y = 4z -+ 7 to the origin is 1/(z — 0)2 + (y — 0)2 = /22 + ¢2.
However, it is easier to work with the square of the distance; that is,

D(z) = <\/9:2—+y2 ) = 2% +y? = 2® + (41 + 7)°. Because the distance is positive, its minimum value will
occur at the same point as the minimum value of D.

D'(z) =2z +2(4x+7)(4) =34z + 56,50 D'(z) =0 & z=-32,
D"(x) = 34 > 0, so D is concave upward for all z. Thus, D has an absolute minimum at x = —%. The point

closest to the origin is (z,y) = (—38,4(-2) +7) = (-2, L).

;

P(x,y)

\

From the figure, we see that there are two points that are farthest away

from A(1,0). The distance d from A to an arbitrary point P(z, y) on the

ellipse is d = \/(z — 1)2 + (y — 0)2 and the square of the distance is

S=d?=g?—2c+14y* =2?—22+14+(4—42?) = 322 —22+5.

§'=--6x—2andS' =0 = z=—1 NowS"=-6<0,s0we

know that S has a maximum at ¢ = —§. Since —1 <z < 1, §(—1) =4,

5(-3) = %, and S(1) = 0, we see that the maximum distance is 4 / %. The corresponding y-values are

y=t/4—4(-2)* = +,/32 = £4,/2 ~ -+1.89. The points are (—%, £1/2).
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19. The area of the rectangle is (2)(2y) = 4xy. Also r? = z2 + 3% so
" = v/r2 —z?,so the area is A(z) = 4z v/r2 — z2. Now
y
2 2 2
-2
% Al(z) =4( T2 g2 — 7 :_ x2> =4\T/T__%.Thecritical

number is £ = 7T Clearly this gives a maximum.

=/r2 = /372 37 = %, which tells us that the

rectangle is a square. The dimensions are 2z = +/2r and 2y = /2 7.

21, T The height A of the equilateral triangle with sides of length L is %i L,
since B? + (L/2)* = L* = K2 =1?-11?=3[% =

B £ £
=L L- L
2 h= £ 3 I. Using similar triangles, -2—— L. =3 =

x L/ 2

y
L V3 = \/gL y = y=£L V3z = y= ?(L—%).
f L |

The area of the inscribed rectangle is A(x) = (2z)y = V3x(L — 2z) = /3 Lz — 2+/3 2%, where 0 < z < L/2.
Now0=A'(z) =v3L—-4v3z = a=+3L/(4V/3) = L/4. Since A(0) = A(L/2) = 0, the maximum

occurs when z = L/4, and y = @L £L 3£L so the dimensions are L/2 and AcL

23, T The area of the triangle is
A(z) = 2 (2t)(r + 2) =t(r + z) = Vr2 — 22(r + z). Then
r+x
—2z —2z
0= A'(#) = r—me 4+ /72— s
il | O = TV T S
2’ +rz

et 22 =
7’2—-'22

2
%:\/r"’—aﬁ = i+rz=r"-2 = 0=20%4+rz~r’=2zc—-r)(z+7r) =
Vr: -z

z=21rorz=—r.Now A(r) =0 = A(—r) = the maximum occurs where z = 17, so the triangle has height

7+ 37 = 2r and base 21/r2 % =24/2 3.2 = /3,

‘The cylinder has volume V = my?(2x). Also z® +¢* =2 =

y? =1 -2’ soV(z) = n(r* — 2*)(2z) = 27 (r’z ~ 2°), where
0<z<r. V(z)=2r(r*-32%) =0 = z=rA/3 Now
V(0) = V(r) = 0, so there is a maximum when z = r/A/3 and
V(rA3) =n(r? = r?/3)(2r\/3) = 4nr® /(3V/3).
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21.

29.

31.

N The cylinder has surface area
- 2(area of the base) + (lateral surface area)
= 27 (radius)® + 27 (radius)(height) = 2my? + 2my(2z).
k Nowz?+y?=7r? = ®=r’-2> = ¥y =+rZ =2, sothe

surface area is
S(x) :27r(r2 — wz) +drzy/r2—22, 0<z<r
=27nr? - 2mz® + 47r(m \/W)

Thus, §'(z) = 0 — dnz + 4w [a: A (r? - acQ)_l‘,z(—2m) + (r? = x2)1/2 . 1]

__

=4 {—x = ——TZLZ_F +VrE —z?| =47 - —zVrt - m__:Q—-_w:;— o
S'x)=0 = zvrZ—zZ=1r>-222 (0 = (m\/ﬁ——m?)z =(r’ - 21:2)2 =
z2 (r2 — m2) =r* — 4?2 4zt = r%? -2t =1t — 4% 1 42t = Bzt — 5rlg? +rt=0.
This is a quadratic equation in 2. By the quadratic formula, 22 = & i \/_ 2, but we reject the root with the + sign

since it doesn’t satisfy (x). [The right side is negative and the left side is positive.] So z = 4/ 5%@ r. Since

S(0) = S(r) = 0, the maximum surface area occurs at the critical number and z2 = 5—_1—0‘/—5 r? =

yr=r?= 5_\/_r —J'—-—‘/_rz = the surface area is

2 (5455 ) 2 +dm\[558 [345,2 =

7_‘_,’,,2|:5 \/5522 5] :m‘z[ﬁ'%[] - (1+\/_)

2 5+f+4\/(5 f(5+f)] TQ[J'J[555+%2_Q]=

zy =384 = y=384/z. Total area is
A(z) = (8 + 2)(12 + 384/z) = 12(40 +  + 256 /), 50
4] y y+12 A'(z) =12(1—256/2°) =0 = =z = 16. There is an absolute

k—on—]

x minimum when x = 16 since A’'(z) < 0for 0 < z < 16 and A’(z) > 0
for z > 16. When & = 16, y = 384/16 = 24, so the dimensions are

24 cm and 36 cm.

N 10 | Let z be the length of the wire used for the square. The total area is

A aw=(5)+5(25) 7T (%5)

- =12+ 810-2)% 0<z<10

A’(m):—ém—*{—é(lO—m):O & 72x+—7 S — 40‘/_—0 & m—g‘fz\;— Now

40v3 \
A(0) = ( )100~481 A(10) = 299 — .25 and A(9+4\/§) ~ 2.72, 50

(a) The maximum area occurs when x = 10 m, and all the wire is used for the square.

- __ _40V3
(b) The minimum area occurs when x = oravs 4.35 m.
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33. - The volume is V = wr?h and the surface area is

S(r) =7rr2+27rrh=7rr2+27rr<—vi> =7r +—
T™r
S’(r):27r'r'-——2—¥:0 = 2mri=2V = r:f/zcm.
T ™
This gives an absolute minimum since S'(r) < 0for0 < r < {/ % and S'(r) > 0 forr > ¢/ % When

_eY .,V __ VsV
"= ﬂ’h_ 2 w(V/m)23 T V& e

W4r?=R? = V=2r’h=2(R?—h)h="2(Rh—h?).
V' (h) = Z(R® - 3h%) =Owhenh = —\}—gR. This gives an absolute

35,

maximum, since V'(h) > 0for0 < h < %R and V'(h) < O for

h> %R‘ The maximum volume is

V(fR) (\/-Rs ;51?:") = ;Z=TR%,

- . . H — . .
37. By similar triangles, % - ——T—ﬁ (1). The volume of the inner cone is

V = }ar®h, so we'll solve (1) for A. il H-h =

R
H Hr HR-Hr H
h= H_?{——_T___(R_T) (2)

A Thus,V()—grz g(R r)—gg(Rr %) =

V'()_ (2Rr 2)_ r(?R 3r).

Vi(ir)=0 = r=00r2R=3r =» 1‘=§Randfrom(2),h=%(R—%R)

V’(r) changes from positive to negative at r = %R, so the inner cone has a maximum volume of

V= 37r1" h——% (gR)z(

3R

23m=3n.

%H ) = % . %T&‘RZH , which is approximately 15% of the volume of the larger cone.

39. S =6sh— 332 cot0+3523§ cscd

(a) Z— =257 csc® @ — 35742 csc@ cot 0 or 357 csc B (csc — V3 cot b).
(b) % =0 whencscd —v3cot =0 = ;;11—0 — Z?r?g 0 = cosf= % The First Derivative
Test shows that the minimum surface area occurs when 8 = cos™ ( ) = 55°.
©) If cos@ = then cotf = f and cscd = 3\/%, so the surface area is
3 _ 3,21 233 82
V3 D) 8 =6sh —3s %+3s 2\/-—Gh 2\/-s—|— f

| =6sh+ 5925° = 63(h+ 7izs)

185
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Va2 +25 55—z T 1
4. Here T'(z) = <z < = THp)= ——— = — 3
ere T(x) 5 + 5 0<z<5 (z) 6/ 8 0 & 8z=6+z2+25

& 162° =9(z® +25) & = \1/—57 But % > 5, so T has no critical number. Since T'(0) ~ 1.46 and

T'(5) ~ 1.18, he should row directly to B.

43. The total illumination is I(z) = i]; + —i——2, 0 < z < 10. Then
% x (10 — )
k
-6k 2k
x—t10—x I o S N ST —2)% = 23
'i ;} ) f& (z) e (10— 2y 0 = 6k(10-2x) kx® =

k 10 | .
310—2) =2 = YB(W0-2)=z = 103- VBr=2

= 10¥3=2+V3z = 10¥3=(1+¥3)z =

Tz = &Z—E ~ 5.9 ft. This gives a minimum since I’ (z) > 0 for
1+ V3
0 <z <10

45, Every line segment in the first quadrant passing through (a, b) with endpoints on the
z- and y-axes satisfies an equation of the form y — b = m(z — a), where m < 0. By

setting z = 0 and then y = 0, we find its endpoints, A(0,b — am) and B(a — £,0).

m

The distance d from A to B is given by d = \/[(a —2)~02+[0— (b—am)?.

It follows that the square of the length of the line segment, as a function of 1m, is given by

b\* 2ab b
S(m) = <a - —) +(am —b)? = a® — — + — +a’m?® — 2abm + b%. Thus,
m m  m
2
S'(m) = Ea_;? = _2% +2a*m — 2ab = —23-(abm —b* +a*m?* — abm?®)
m m m

2 2
= m[b(am —b) +am®(am —b)] = e (am — b)(b + am?)
Thus, S'(m) =0 & m=b/aorm= —\3/%. Since b/a > 0 and m < 0, m must equal —f’/g. Since
—2—3 < 0, we see that §'(m) < 0 form < — i’/g and S'(m) > 0 form > — f’/g. Thus, S has its absolute
m
minimum value when m = — f’/g . That value is
S 3/6 Y _ b3a2 3/b b2—" Wz \VTbe
~{t )= letvy5) + (a{/t-b) = (a+ ¥a ) +(Va +b)
= 0% + 2a"/3b%/3 4 G2/3p/3 | gA3R2/3 | 0q2 /3483 L B2 — g2 | 344/3p2/3 | 3,2/354/3 | 2

The last expression is of the form 2° + 3z%y + 3zy? + ° [= (z+ y)3] with & = a?/% and y = /3,

so we can write it as (a®/® ++ 2/3)% and the shortest such line segment has length /S = (a?/3 + b?/3)3/2,
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41. Here s° = h? + b%/4, s0 h* = s® — b%/4. The area is A = 1b /52 — b%/4.
s 5 Let the perimeter be p, s02s +b=pors=(p—-b)/2 =
h
A(b) = 1b/(p — b)?/4 — b2/4 = b/p® — 2pb/4. Now
) b ' V/p? = 2pb - 2 ’
b Ay = VP2 WA IBOED qyerefore, A(D) =0 =
4 p? —2pb  4./p? —2pb

—3pb+p®> =0 = b=p/3.Since A’(b) > 0forb < p/3and A’'(b) < 0for b > p/3, there is an absolute

maximum when b = p/3. Butthen 2s + p/3 =p,sos =p/3 = s=b = the triangle is equilateral.

49. Note that |AD| = |[AP|+|PD| = b5=xz+|PD| = |PD|=5 — z. Using the Pythagorean Theorem
for APDB and APDC gives us

L(z)=|AP|+|BP|+|CP| =2+ /(5 —z)2 + 22 + /(5 — )2 + 32

=z 422 — 10z + 29 + /22 — 10z + 34

r—>5 r—5
VeZ =10z +29 22 =10z + 34

= L(z)=1+

12 0.3

)
0 o

9 =03

From the graphs of L and L', it seems that the minimum value of L is about L(3.59) = 9.35 m.

51. A The total time is
al® T(z) = (time from A to C) + (time from C to B)
C d—x 5 3 — 33
= :\/a +x +\/b2+(d x), G i
(%1 V2
P b
2 ; T d—=x sinfl;  sinfs
g T@)= Vv tz2 7 -
} d 4 nva?+ a2 vy /b2 + (d— ) v1 v2

o sin @ sin @
The minimum occurs when 7/(z) =0 = 2
v1 v2

[Note: T" (z) > 0]
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53. x B A y? = x? -+ 22, but triangles CDF and BC A are similar, so
8%
X Hx—4 z/8 =z /(4V/x —4) = 2z =2zx/+/x— 4. Thus, we minimize
/
Y 1'C f (w) 2 _ 2 2 . .3 _
=y’ = +45°/(z-4)=2"/(z —4), 4<z<8
V4
, Py Eo96) -2 e -a] _ 2lz-6) _,
o (x —4)? (z—4)? (z —4)?
D ——+E
' when z = 6. f'(z) < 0 whenz < 6, f'(z) > 0 when = > 6, so the
minimum occurs when z = 6 in.
55. 1t suffices to maximize tan 6. Now
0 3t tany + tan 6 t+tand
= =t 9) = = .
1¢ 1 an(y +9) 1 —tanty tan® 1 —ttanf
So3t(1~ttanf) =t+tanf = 2t= (1+3t°)tanf =
t
2t 2t
k 3t | = — = = ——
tané 1+3t2.Letf(t) tan6 1736

2(1+3t%) —2t(6t)  2(1-3t%)

r'e= 1+32)2  (1+32)°

1—-32 =0 < t:%sincetzo.

Now f/(t) >0for0 <t < % and f'(t) < Ofort > %, s0 f has an absolute maximum when t = -3

V3
2(1//3
andtane:—(—/\/——)—i = % = 0 = Z. Substituting for ¢ and 6 in 3¢ = tan(y) + ) gives us
1+ 3(14/3)
V3=tan(y+%) = ¢==.
5 2 .
57. From the figure, tan o = - and tan 8 = Fyw Since
o _1( 5 1 2
a+B8+0=180°==x,0=m —tan — ) — tan —_— =
. T 33—z
de 1 ( 5) 1 [ 2
2 EEZ_’—_2 T2 2 | (322
1+ (%) 1+ (725) 1O
X« / B 3—x z 3—=
4 d B .2 5 _B-wt 2
22+25 22 (3-xz)2+4 (3-z)*
do 5 2
Now — = = 202 =522 -3
owdm 0 = TR e W = 2z°+50 =52 Oz + 65 =

322 ~30x+15=0 = 2°—102+5=0 = x=>5=+2+/5. Wereject the root with the + sign,

since it is larger than 3. df/dz > 0 forz < 5 — 2+/5 and df/dzx < 0 forz > 5 — 2/5, s0 6 is maximized

when |AP| =z =5 — 25 ~ 0.53.
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59. b p In the small triangle with sides @ and ¢ and hypotenuse W, sin @ = %
a [ and cos 8 = ﬁc; In the triangle with sides b and d and hypotenuse L,
L
AW . d b . .
sinf = 7 and cos§ = I Thus,a = Wsin8,c = Wcosf,d = Lsin8,

and b = L cos 6, so the area of the circumscribed rectangle is
A(0)=(a+b)(c+d)=(Wsin€ + Lcos8)(W cos@ + Lsin9)
=W?sing cos + WLsin? @+ LW cos® 8 + L?sin 6 cos 6
= LW sin® § + LW cos® 0 + (L2 4+ Wz)sinﬂ cosf
= LW (sin® @ + cos® 8) + (L* + W?) - £ - 2sin6 cos
=LW +3(L*+W?)sin20, 0<0<Z

This expression shows, without calculus, that the maximum value of A(6) occurs whensin2 =1 & 20=3%

= 0= %. Sothe maximum areais A(§) = LW + 3 (L® + W?) = 3 (L* + 2LW + W?) = L(L + W)?.

61. (a) If k = energy /km over land, then
5 2+ 25 energy/km over water = 1.4k. So the total energy is
E=14k/254+ 22+ k(13 —12),0 <z <13,
B x C 13—=x D afid Soﬁ _ 1.4kx

dz 25 _|_$2)1/2‘ -

set 2 _ 0. 1.4k0 = k(25 + 2?
dz

)% = 19627 =22 +25 = 0962 =25 = o= wm5lL

Testing against the value of E at the endpoints: E(0) = 1.4k(5) + 13k = 20k, E(5.1) =~ 17.9k,
E(13) & 19.5k. Thus, to minimize energy, the bird should fly to a point about 5.1 km from B.

(b) If W/ L is large, the bird would fly to a point C that is closer to B than to D to minimize the energy used flying
over water. If W/ L is small, the bird would fly to a point C that is closer to D than to B to minimize the

distance of the flight. E = W+/25+ 2?2 + L(13 —z) = aE = L A L = 0 when

dzx V25 + z2
W _ V25 + 2
T

i7 . By the same sort of argument as in part (a), this ratio will give the minimal expenditure of

energy if the bird heads for the point :c km from B.

(c) For flight direct to D, z = 13, so from part (b), W/L = @ ~ 1.07. There is no value of W/ L for which
the bird should fly directly to B. But note that zl_if.ﬁh (W/L) = o0, so if the point at which F is a minimum is
close to B, then W/ L is large.

(d) Assuming that the birds instinctively choose the path that minimizes the energy expenditure, we can use the
equation for dE/dx = 0 from part (a) with 1.4k = ¢,z = 4,and k = 1: (¢)(4) = 1- (25 + 47) vz
c=+V41/4~186.
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4.8 Applications to Business and Economics

1. (a) C(0) represents the fixed costs of production, such as (c) The marginal cost function is C'(z).
rent, utilities, machinery etc., which are incurred even We graph it as in Example 1 in
when nothing is produced. Section 2.9.
(b) The inflection point is the point at which C”'(a') changes ¢

from negative to positive; that is, the marginal cost C' (z)
changes from decreasing to increasing. Thus, the

marginal cost is minimized at the inflection po:nt.

3. c(z) = 21.4 — 0.002z and ¢(z) = C(z)/z = C(z) = 21.4z —0.002z>. C'{z) = 21.4 — 0.004z and
C’(1000) = 17.4. This means that the cost of producing the 1001st unit is about $17.40.

5. (a) The cost function is C(z) = 40,000 4+ 300z -- 2, so the cost at a production level of 1000 is

C(1000) = $1,340,000. The average cost function is c(z) = Oix) 40,000 ——— + 300 + z and
¢(1000) = $1340/unit. The marginal cost function is C(z) = 300 + 2z and C'(1000) = $2300/unit.

(b) See the box preceding Example 1. We must have C’ (z) = ¢(z) < 300-+2z = 40,000 —/—— +300+2z &
= &EOO = 22=40,000 = =z = /40,000 = 200. This gives a minimum value of the average cost
function ¢ (z) since ¢’ (z) = 809’60300 >0

(c) The minimum average cost is ¢(200) = $700, unit.

7. (a) C(z) = 16,000 + 200z + 42*/2, C(1000) = 16,000 + 200,000 + 40,000 v/10 ~ 216,000 + 126,491, so
C(1000) ~ $342,491. c(z) = C(z)/z = E@ 4+ 200 4 42, ¢(1000) =~ $342.49 /unit.
C'(z) = 200 + 622, C'(1000) = 200 + 60 \/_0 ~~ $389.74/unit.

L2 16,000

(b) We must have O’ (z) = c(z) < 200+ 6z U 1200+ 4212 o 2232 =16,000 <

& = (8,000)2/® = 400 units. To check that this is a minimum, we calculate
—16,000 2 2
’ — > il 3/2
c(2) 2 & N =
and positive for z > 400, so c is decreasing on (0, 400) and increasing on (400, co). Thus, ¢ has an absolute
minimum at © = 400. [Note: ¢’ (z) is not positive for all z > 0.]

— 8000). This is negative for z < (8000)%/% = 400, zero at 2 = 400,

(c) The minimum average cost is ¢(400) = 40 + 200 + 80 = $320/unit.

9. (a) C(x) = 3700 + 5z — 0.04z2 4 0.0003z° = C’(x) =5 — 0.08z + 0.0009z (marginal cost).
() = C(z) _ 3700

- 2= 4+ 5—0.04z + 0.000322 (average cost).
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(b) 100 The graphs intersect at (208.51, 27.45), so the production

level that minimizes average cost is about 209 units.

500

(© d(z) = —3100 0.04 + 0.0006z: =0 = 3700+ 0.04z% — 0.0006z°> =0 = z; =~ 208.51.

— -
c(x1) = $27.45 /unit.
(d) The marginal cost is given by C’(x), so to find its minimum value we’ll find the derivative of C’; that is, C".

C"(z) = —0.08+0.00182 =0 = 2 =520 =4447 C'(z1) = $3.22/unit.

C"'(z) = 0.0018 > 0 forall z, so this is the minimum marginal cost. C*” is the second derivative of C’.
C{z) = 680 + 4z 4+ 0.012°%, p(z) =12 = R(x) = zp(x) = 12z. If the profit is maximum, then
R(z)=C'(z) = 12=4+0.02c = 002z=8 = z = 400. The profitis maximized if P"(z) < 0,
but since P”(z) = R"(z) — C”(z), we can just check the condition R"(z) < C"(z). Now
R'(z) =0 < 0.02 = C"(z), so z = 400 gives a maximum.

C(z) = 1450 + 362 — 22 + 0.00123, p(z) = 60 — 0.01z. Then R(z) = zp(z) = 60z — 0.012>. If the profit is
maximum, then R'(z) = C'(z) < 60 —0.02z = 36 — 2z +0.003z> = 0.003z® — 1.98x — 24 = 0. By

1.98 + /(--1.98)% + 4(0.003)(24) _ 1.98 + /4.2084
2(0.003) N 0.006

z ~ (1.98 4 2.05)/0.006 ~ 672. Now R’ (z) = —0.02and C"(z) = -2+ 0.006z = C”(672) = 2.032

= R"(672) < C"(672) = thereis a maximum atz = 672.

the quadratic formula, x = . Since z > 0,

C(z) = 0.0012® — 0.3z + 62 + 900. The marginal cost is C’(z) = 0.003z> — 0.6z + 6.

C'(x) is increasing when C”(z) >0 < 0.006z—0.6 >0 < =z > 0.6/0.006 = 100. So C'(z) starts to

increase when ¢ = 100.

(a) C(x) = 1200 + 12z — 0.1z2 4 0.00052°. 10,000
R(z) = zp(z) = 29z — 0.00021=>.

Since the profit is maximized when R'(z) = C'(x),

we examine the curves R and C in the figure, looking for x-values at

which the slopes of the tangent lines are equal. It appears that z = 200 is

0 . . 400

a good estimate.

() R(z) =C'(x) = 29~0.00042x =12 — 0.2z + 0.00152°> = 0.00152° — 0.19958z — 17 =0 =
x = 192.06 (for = > 0). As in Exercise 11, R"(z) < C"(z) = —0.00042 < —0.2+0.003z <
0.003z > 0.19958 << =z > 66.5. Our value of 192 is in this range, so we have a maximum profit when we
produce 192 yards of fabric.
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19. (a) We are given that the demand function p is linear and p(27,000) = 10, p(33,000) = &, so the slope is
505 —35000 = — 300 and an equation of the lineis y — 10 = (—555) (¢ — 27,000) =
y =p(z) = — 35552 + 19 = 19 — (z/3000).
(b) The revenue is R(x) = zp(x) = 19z — (z%/3000) = R'(z) =19 — (z/1500) = 0 when z = 28,500.
Since R"(z) = —1/1500 < 0, the maximum revenue occurs when x = 28,500 => the price is
p(28,500) = $9.50.

21. (a) Asin Example 3, we see that the demand function p is linear. We are given that p(1000) = 450 and deduce that

p(1100) = 440, since a $10 reduction in price increases sales by 100 per week. The slope for p is

7m0 480 = — <&, 50 an equation is p — 450 = — (& — 1000) or p(z) = —55 + 550.

(b) R(z) = zp(z) = —552° + 550z. R'(x) = --1x + 550 = 0 when = = 5(550) = 2750.
p(2750) = 275, so the rebate should be 450 — 275 = $175.
(©) C(z) = 68,000 + 150z =
P(z) = R(z) — C(z) = —153” + 550z — 63,000 — 150z = — 52 + 400z — 68,000,
P'(z) = —2x + 400 = 0 when z = 2000. p(2000) = 350. Therefore, the rebate to maximize profits should
be 450 — 350 = $100.

23. If the reorder quantity is x, then the manager places il orders per year. Storage costs for the year are
z

dollars. The total

3@ - 4 = 2x dollars. Handling costs are $100 per delivery, for a total of —8—29 -100 = 0,000
z

80,000
x

costs for the year are C(z) = 2z + . To minimize C(z), we calculate

80,000 2

22 = (x® — 40,000). This is negative when < 200, zero when z = 200, and positive when
T

C'(z)=2—

x > 200, so C is decreasing on (0, 200) and increasing on (200, 0o), reaching its absolute minimum when
x = 200. Thus, the optimal reorder quantity is 200 cases. The manager will place 4 orders per year for a total cost
of C'(200) = $800.

4.9 Newton's Method

1. (a) y The tangent line at x = 1 intersects the z-axis at
; o x =~ 2.3, 50 z2 =~ 2.3. The tangent line at
/ x = 2.3 intersects the z-axis atz = 3,
1 ' so z3 ~ 3.0.
0| | s x

(b) 1 = 5 would not be a better first approximation than z1 = 1 since the tangent line is nearly horizontal. In fact,
the second approximation for 1 = 5 appears to be to the left of z = 1.
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23 — 622 + 3z, +1

13, fz) =22 —62°+3z+1 = fl(z)= 622 -120+3 = Tntr =Tn— 6% — 197, +3 We
need to find approximations until they agree to six decimal places. z1 = 2.5 = z2 = 2.285714,
23 =~ 2.228824, 14 & 2.224765, x5 ~ 2.224745 r= 6. So the root is 2.224745, to six decimal places.
15. sinz = 22,50 f(z) =sinz — 2> = f'(z)=cosz—2z = y
: .2
Tl = Tn — S%n = n Brom the figure, the positive root of \
COS Ty, — 2%n 0 1 x
sinz=z2isnear 1.1 =1 => z2 2 0.891396, x5 ~ 0.876985,
x4 ~ 0.876726 =~ x5. So the positive root is 0.876726, to six decimal
places.
17. 3 From the graph, we see that there appear to be points of intersection near

z = —0.7and z = 1.2. Solving z* = 1 +  is the same as solving
f(.?:)=1‘4—1;—1:0.f(w)___$4_$_1 = f(z)=42%—1,

xr —z, -1

=2 2 SO Tnt1 = Tpn —
l/ n+ n 432% 1

Ty = —0.7 T = 1.2

T2 &~ —0.725253 T2 & 1.221380

3 ~ —0.724493 T3 ~ 1.220745

14 & —0.724492 = z5 Ts = 1.220744 =~ x5

To six decimal places, the roots of the equation are —0.724492 and 1.220744.

19. 3 From the graph, there appears to be a point of intersection near z = 0.5.

,—\ Solving tan™! z = 1 — = is the same as solving

fz)=tan 'z +z—-1=0. f(z) =tan 'z +z -1 =

-3 3
, 1 tan ™' &, + T — 1
= - 1 n = Xp —
fl@) =g T hsomntt =% = AT Ty 1
) 1 =05 = xz~ 0.520196, z3 ~ 0.520269 ~ x4. So to six decimal
-3
places, the root of the equation is 0.520269.
21. From the graph, there appears to be a point of intersection near z = 0.6. 2

Solving cosx = -/ is the same as solving flz) = cosz —/z = 0. V

f@) =cosz— @ = f(z)=—sinz—1/(2yZ), 50 -z ~
COS T, — +/Tn

ntl = Ty — . Ni =06 = [ \J

SR —sinz, —1/(2/%) S

zo ~ 0.641928, T3 ~ 0.641714 =~ x4. To six decimal places, the root of

the equation is 0.641714.
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3. Since z1; = 3 and y = 5z — 4 is tangent to y = f(x) at z = 3, we simply need to find where the tangent line

intersects the z-axis. y =0 = bry —4=0 = x;= %.
3 -
5. f(z) =2 +2z—4 = f'(z)=30>+2,50Tn41 = Tp — %—4_23:—”——4 Nowz, =1 =
3z2 42
1+2—4 -1 (1.2)* +2(1.2) — 4
=l —-— =1 =12 =12~ ~ 1. .
T2 3 1212 3 = x3=1 3127 +2 1.1797
_ 4 43 _ fzn) zy — 20
1 flz)=2"-20 = f'(z)=4a’ 50 Tns1 =2Tn — 7(on) =0 -~
24 — 20 (2.125)* — 20
Ni =2 =2~ ——— =212 =212 — ——"——— = 2, ;
ow T1 = I3 12y 5 = x3 5 4(2.125)° 1148
9. flx)=2°+2z+3 = fl(x)=327+1,50 7
Tn4l =T —MNowx =-1 =
ntl = Tn 3z2 +1 1= (—1,25,0)/ ¢
m __4_(—U3+(—D+3___ __—1—1+3___1_l___125 - \ LD ]
2= 3(—1)2+1 31 g~ J

Newton’s method follows the tangent line at (—1, 1) down to its
intersection with the z-axis at (—1.25, 0), giving the second

approximation z, = —1.25.

11. To approximate z = /30 (so that 2> =: 30), we can take f(z) = «* — 30. So f'(z) = 322, and thus,
x> — 30
3z2
until they agree to eight decimal places. z; =3 = 2 &~ 3.11111111, z3 =~ 3.10723734,
x4~ 3.10723251 ~ xs5. So /30 ~ 3.10723251, to eight decimal places.
Here is a quick and easy method for finding the iterations for Newton’s method on a programmable calculator.

Tntl = Tn — Since &/27 = 3 and 27 is close to 30, we’ll use z; = 3. We need to find approximations

(The screens shown are from the TI-83 Plus, but the method is similar on other calculators.) Assign f(z) = = — 30
to Y1, and f'(z) = 3% to Yo. Now store 21 = 3 in X and then enter X — Y1 /Y5 — X to get 2 = 3.1. By
successively pressing the ENTER key, you get the approximations z3, 24, . . ..

Flotl Flokz Plot: JHH
~MiBx2-38
WeE3IRE e
Y= Sa
WWy= 3
W= K
“ME= 3
wWMaz= [ |

In Derive, load the utility file SOLVE. Enter NEWTON (x*3-30,x, 3) and then APPROXIMATE to get
[3,3.11111111, 3.10723733, 3.10723250, 3.10723250]. You can request a specific iteration by adding a fourth
argument. For example, NEWTON (x"~3-30,x, 3,2) gives [3,3.11111111, 3.10723733].

In Maple, make the assignments f :=  — 2°3 — 30;, ¢ := z — z — f(z)/D(f)(z);, and z:= 3.;.
Repeatedly execute the command z := g(x); to generate successive approximations.

In Mathematica, make the assignments f[z_] := z°3 — 30, g[z_] := = — f[z]/f[z], and z = 3.
Repeatedly execute the command = = g[.t] to generate successive approximations.
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29. (a) f(x) =2* —a = f'(x) = 2z, so Newton’s method gives

tory—g, _mza_ 1 e 1 . a 1(  a
T T T, 27 T2, 27 T2, T 2\ T, )

(b) Using (a) with ¢ = 1000 and z; = /900 = 30, we get x2 ~ 31.666667, x3 ~ 31.622807, and
T4 & 31.622777 =~ x5. So /1000 = 31.622777.

M. f(zx) =2 -3z +6 = f'(z)=32>—3.If2y =1, then f'(z1) = 0 and the tangent line used for

approximating x2 is horizontal. Attempting to find z2 resuits in trying to divide by zero.

33. For f(z) = z*/3, f'(z) = 1z7%/* and 3
-
1/3
T T
Tntl = Tn — f,( n) =Tn— 7 12/3 = 2Zp — 3%n = —2%n.
f (wn) 3on -1
. o . -3 3
Therefore, each successive approximation becomes twice as large as the )0\5/2

previous one in absolute value, so the sequence of approximations fails to

converge to the root, which is 0. In the figure, we have z; = 0.5, —
Iy = —2(0.5) = ~1,and 23 = —-2(—1) = 2.

35. (a) f(z) = 3z* — 282° +- 622 +24x = f'(2) =122° —842° + 122+ 24 =

fl(x) 2
fi@) 3 ~

3~ 06455 = z4=x0.6452 = x5~0.6452. Nowtryz; =6 = x2=7.12 =

T3~ 6.8353 = x4~6.8102 = z5~6.8100.Finallytryz; =—-05 = 22~ -04571 =

x3 ~ —0.4552 = x4 =~ —0.4552. Therefore, z = —0.455, 6.810 and 0.645 are all critical numbers correct

to three decimal places.

(b) f(-1) =13, f(7) = —1939, f(6.810) =~ —1949.07, f(—0.455) =~ —6.912, f(0.645) ~ 10.982. Therefore,
f(8.810) =~ —1949.07 is the absolute minimum correct to two decimal places.

f"(z) = 36z® — 168z + 12. Now to solve f'(z) =0, ryz1 = 3 = x2 =1 —

37 4 From the figure, we see that y = f(z) = €°°°® is periodic with period 2.
A Y To find the z-coordinates of the IP, we only need to approximate the zeros
SN SN :
A ANA | NANA of y" on 0,7]. f'(z) = —€**sinz =

~10 ' ~ 10
[ \ } \ / "\/ J f(z) = e°°**(sin® z — cos z). Since €™*% 3 0, we will use Newton’s
¥

method with g(z) = sin® z — cos z, g’ () = 2sinz cosx + sin z, and
= 21 = L. w2 ~ 0.904173, 23 ~ 0.904557 ~ z4. Thus,
(0.904557,1.855277) is the IP.

39. 56,000 The volume of the silo, in terms of its radius, is
V{r) =nr?(30) + 3 (§7r®) = 307mr® + Znr®.
From a graph of V, we see that V (r) = 15,000 at r = 11 ft. Now we use
Yy = 15,000 Newton’s method to solve the equation V(r) — 15,000 = 0.

L J dv 30mr; + 27y, — 15,000
20 == 2772, 50 T = T — M :
0 ar 60mr 4 2mr°, 50 TRyl =T 60mrs + 2nr2
r1 = 11, we get r2 &~ 11.2853, r3 =~ 11.2807 = r4. So in order for the

silo to hold 15,000 ft® of grain, its radius must be about 11.2807 ft.

. Taking
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23. s f@)=2°"—a* —52° — 22 +42+3 =
—2( T\ n 3 fl(z) =52 —42® — 1522 - 2x +4 =
25—t —b5xd — 22 + 4z, +3
S5a4 —4x3 — 1522 — 2z, + 4
there appear to be roots near —1.4, 1.1, and 2.7.

Tntl = Tn — . From the graph of f,

-19
Tr = —1.4 T = 1.1 xr) = 2.7
z2 ~ —1.39210970 xz2 ~ 1.07780402 T2 A 2.72046250
z3 ~ —1.39194698 z3 ~ 1.07739442 T3 ~ 2.71987870

T4 & —1.39194691 = z5 T4 ~ 107739428 =~ z5 T4 = 2.71987822 =~ x5
To eight decimal places, the roots of the equation are —1.39194691, 1.07739428, and 2.71987822.

25, 3 . From the graph, y = 2%v/2 —  — 22 and y = 1 intersect twice, at
z~—-2andatz~ —1. flz) =22 -—z—22—-1 =
fll@y=2*-@2-2-2*)"3(-1-22)+ (2 -z —2?)V/%. 2z
_3 \\A 5 =3x(2—z—2*) % [2(~1 - 22) + 4(2 — z — z?)]
L D, _ z(8 — 5z — 62?)
N 2/ +2)(1-2)
222 =, —xz2 — 1

SO Lnt1 = Tn — . Trying z1 = —2 won’t work because f'(—2) is undefined, so we’ll
€0 (8 — 5Ty — 622)

22+ zr)(1 —zn)

try 1 = —1.95.
1 =-1.95 z1 = —0.8
T2 A —1.98580357 xg & —0.82674444
z3 ~ —1.97899778 x3 ~ —0.82646236
x4 ~ —1.97807848 x4 ~ —0.82646233 ~ x5

x5 ~= —1.97806682
xe =~ —1.97806681 ~ =7

To eight decimal places, the roots of the equation are —1.97806681 and —0.82646233.

2

2 .
21. 3 From the graph, we see that y = e™® and y = z“ — x intersect

twice. Good first approximations are x = —0.5 and z = 1.1.
flx) = e —?tr = fiz) = 22" — 22+ 1,50

—m2
e % —z2 4z,

-2 2 ntl = Ly — .
L J Tt ~2Zne %% — 22p + 1
-1
1, = —0.5 1 = 1.1
zo & —0.51036446 T2 & 1.20139754
x3 &~ —0.51031136 =~ x4 T3 ~ 1.19844118

T4~ 1.19843871 =~ x5
To eight decimal places, the roots of the equation are —0.51031156 and 1.19843871.
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17.

19.

21.

23.

25,

27

29,

3.

33.

35.

37.

flx) =5z* -2z = F(w)=5-f5—5-—2-%6+c=$5—%w6+0- 25
F(0)=4 = 0°-3.0°+C=4 = C=4,50 f %\
F(z) = 2® — 22° + 4. The graph confirms our answer since f(z) = 0 -2 4
when F has a local maximum, f is positive when /' is increasing, and f is t %’ \ \ J
negative when F' is decreasing. —-20

2 3

X

f(z) = 6z +122° = f’(m)=6-%—+12-?+C=3m2+4m3+0 =

3 4
flx)=3- % +4- %— +Cx+D=2x+2z*+Czr+ D [Cand D are just arbitrary constants]

@ =1+ = f@)=a+5*°+0 =
f(@) =

(S

g?+ 8. 525 Co+ D =La? + 2254 Ca+ D
"ty=e = f't)=e+C = ft)=e+Ct+D = f(t)=€e+3iCt?+Dt+E

flle)=1-6z = fl@)=2—-32>+C.f(0)=Cand f(0)=8 = C=8s0f(z)=x—32°+8.

. F (@) = V(6 +5z) = 622 + 5232 = f(x) = 42>/ + 22%2 4 C.

f(1)=6+Cand f(1) =10 = C =4,s0 f(x)=4a®? + 22 + 4.

f'(t) =2cost +sec’t = f(t) =2sint+tant + C because —m/2 < t < /2.
F(E) =2(v3/2) +V3+ 0 =2V3+Cand f(Z) =4 = C=4-2350
f(t) = 2sint + tant + 4 — 2/3.

flz)=2/z = f(z)=2h|z|+C =2In{—z)-+ C (since z < 0). Now
f(-1)=2In1+C=2(0)+C=7 = C =1 Therefore, f(z) = 2In(—2z) + 7,z < 0.

f'(z) =242 420 +10 = f'(z)=82°4+2°+102+C. f'(1) =8+1+10+Cand f'(1)=-3 =
19+C=-3 = C=-2250f(z) =8>+ 2° + 10z — 22 and hence,

flz) =22 + L2 + 502 — 220+ D. f(1) =2+ 3+5—-22+Dand f(1) =5 = D=22-F =25,
so f(z) = 2z* + 3o + 52® — 22z + 22,

f"(8) =sinf+cosf = f'(6)=—cosf+sinf+C. f(0)=—-1+Candf(0)=4 = C=25,50
f'(6) = —cos§ + sin@ + 5 and hence, f(0) = --sinf —cos 4+ 50 + D. f(0) = -1+ Dand f(0) =3 =
D =4,5s0 f(f) = —sin@ — cos 0 + 56 + 4.

f'xy=2-122 = f(z)=22—-62>+C = f(z)=12°>—-22°+Cz+D.
FO)=Dand f(0)=9 = D=0 f(2)=4—16+2C+9=2C—3and f(2) =15 = 2C =18 =
C =9,s0 f(x) = 2% —22° + 9z + 9.



SECTION 410 ANTIDERIVATIVES O 197
#1. In this case, A = 18,000, R = 375, and n = 5(12) = 60. So the formula A = ? [1 - (1+i)~™] becomes

18,000 = 3775 M-(1+2)"% & 48z=1-(1+2)"% [multiply each termby (1 + z)%°] <«

48z(1 +2)%° — (14 2)% + 1 = 0. Let the LHS be called f(z), so that
f'(z) = 482(60)(1 + ) + 48(1 + 2)°® — 60(1 + z)*°

=12(1 + z)* [42(60) + 4(1 + &) — 5] = 12(1 + z)*° (244 — 1)

481+ 2,)% — (1—2,)° +1
12(1 + )% (2442, — 1)

estimate for z = 7. So let z1 = 1% = 0.01, and we get z2 &~ 0.0082202, z3 ~ 0.0076802, z4 ~ 0.0076291,

Tnt1 = Tn — . An interest rate of 1% per month seems like a reasonable

x5 & 0.0076286 ~ xg. Thus, the dealer is charging a monthly interest rate of 0.76286% (or 9.55% per year,

compounded monthly).

410 Antiderivatives

2+1 141

z
1. f(z) =62 -8z +3 = F(z)= 62+1 81_|_1+3:c+C’——2w —4z* +3z+C

Check: F'(z) =232 —4-22+ 3+ 0==62> — 82+ 3 = f(x)

3 3 5 7 F 2t 5$5+1 3$7+1 C lod | 5,6 3,8 ~

. f(z)=1—2"+52° -~ 32" = (:,c)—w—3+1+ 511 7+1+ =z—zz" +g2° — 30 +
1/4+1 3/4+41 5/4 7/4

. = 5gl/t — 73/ F(z) = 5% - il C=55_— 72 _ 1 C=4%" 42741 C

5. f(z) =5z Tz = F(z) )%+1 711 + 55/4 7/4+ z z/*+

1. flz) =6z~ Yz =62 -2z1/8 =

p1/2+1 L1/6+1 3/2 27/8
F(z) =6 —4—— — C=6mz— = +C=42%2- 8275 1 C
@) T4 6+1+ 37 " 6 ’
-8
101:8 +C, =—4—5-§ +C ifz<0
9. f(z) = = = 10z~° has domain (—o0, 0) U (0, ), so F(z) = _5 z
mpey + Cs if x>0
See Example 1 for a similar problem.
4 4 1/2
w+3u u 3u _
"'f(u)z——'u?——:?ﬁ_'— 2 = 4%+ 3u 32 o
ud u—3/2+1 1, u—1/? 6
- —Zud - 2 a0
F(u) = +3 3/2+1+C ¥ . 1/2+C u \/—-i-

13. g(8) = cos® — 5sinf = G(B) =sinb —5(—cosf)+ C =sinf +5cosb + C

= F(z)=2*+5sin"'z+C

15. f(z) =2z +5(1—2%) "% =20 + \—/15 =
—Z
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51.

55,

51.

59.

61.

f(z) =sin(z?), 0<z <4 53.

F
7/ /7—\\\—/ [ ]I
/7 7—=\\\—/ | ||

f 14/777—\\—/ 11

17 7/—\\—/ 1] |

O : 4 0 77 T \\é/ iJr v
.._1...

-1.1 =2F///7—\\\—=/ 111

SR

1.1

0571

‘We compute slopes [values of f(z) = (sinz)/x for

z | flo) il f(@) 0 < z < 2x) as in the table [lim,_,q+ f(z) = 1] and draw a
0 1 3.5 ) —0.100 direction field as in Example 6. Then we use the direction
0.5 | 0.959 4.0 | —0.189 field to graph F starting at (0, 0).

1.0 | 0.841 4.5 | —0.217 y

15 | 0.665 50 | —0.192 SRR A AR

2.0 | 0.455 5.5 | —0.128 AR /A
2.5 | 0.239 6.0 | —0.047 G e
SN IS e~~~ —
3.0 | 0.047 Wi 777 e =~~~
/] /S S N~ —
A e

0 2 4 6 x

y - -~ Remember that the given table values of f are the slopes of I at any x.

0.6 - F For example, at z = 1.4, the slope of F'is f(1.4) = 0.
04 -
02 g

0 04 08 12 167

v(t) = s'(t) =sint —cost = s(t)=—cost—sint+C.s(0)=—-1+Cands(0)=0 = C=1,50
s(t) = —cost —sint + 1.

at) =v' () =t—2 = o(t)=3t>-2t+C.v(0)=Candv(0) =3 = C=3,s0v(t) =41t —~2t+3

and s(t) = 3t —¢*+ 3t + D. 5(0) = Dand 5(0) =1 = D =1,ands(t) = 15— 43t + 1
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39. f'(x) =2+cosz = f(z)=22+sine+C = f(z)=2>—-cosz+Czr+D. f(0)=—1+Dand
fO)=-1 = D=0 f(%)=n?/4+(%)Cand f(3)=0 = (3)C=-n%/4 = C=-%,50

f(z) =2 —cosz — (%)z.

M fa)y=2%2>0 = f(r)=-1/z+C = f(x)=-Inlz|+Cz+D=—Inz+Czx+D
(sincex >0). f(1)=0 = C+D=0andf(2)=0 = -In2+2C+D=0 =
—In2+2C-C=0 [sinceD=-C] = -Im24+C=0 = C=mIh2andD=—-1n2.

So f(z) = ~Inz+ (In2)z —In2.

43. Given f'(z) = 2z + 1, we have f(z) = 2> + = + C. Since f passes through (1,6),
f)=6 = 12414+C=6 => C =4.Therefore, f(z) =2+ 2z +4and f(2) =2%+2+4= 10.
45. b is the antiderivative of f. For small z, f is negative, so the graph of its antiderivative must be decreasing. But

both a and ¢ are increasing for small z, so only b can be f’s antiderivative. Also, f is positive where b is increasing,

which supports our conclusion.

47. The graph of F' will have a minimum at 0 and a maximum at 2, since f = F” goes from negative to positive at

z = 0, and from positive to negative at x = 2.

e
F
0 2 x
49, y
2l 22 2 if0<z<l1 204+C if0<z<1
. fllz)=41 ifl<z<2 = fl@)=<z+D ifl<z<2
1,1 3,1
S Gl 1 if2<z<3 2+E if2<z<3

0 1 2 3 %
_1./ fl0)=—-1 = 2(0)+C=-1 = C = -—1. Starting at the point

(0, —1) and moving to the right on a line with slope 2 gets us to the point

(1,1). The slope for 1 < & < 2is 1, so we get to the point (2, 2). Here we

have used the fact that f is continuous. We can include the point z = 1 on
either the first or the second part of f. The line connecting (1, 1) to (2, 2) is y = x, so D = 0. The slope for
2<x<3is—1,sowegetto(3,1). f3)=1 = -3+E=1 = E =4 Thus,

2r—1 if0<z<1
flzy=<= if l<e <2
—z+4 if2<x<3

Note that f’(z) does notexistat z = 1 oratz = 2.
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77. Let the acceleration be a(t) = k km/h%. We have v(0) = 100 km/h and we can take the initial position s(0) to
be 0. We want the time ¢; for which v(¢) = 0 to satisfy s(t) < 0.08 km. In general, v’ (t) = a(t) = k, so
v(t) = kt + C, where C = v(0) = 100. Now §'(£) = v(t) = kt + 100, so s(t) = 2kt* + 100t + D, where

D = s(0) = 0. Thus, s(t) = 1kt* + 100¢. Since v(ts) = 0, we have kts + 100 = 0 or t; = —100/k, so

100 100 1 5,000
s(ty) = —k <__k_> + 100 ( - ) = 10,000 (5@ - %> = The condition s(t;) must satisfy is
———5’(1]600 <0.08 = 500(? ; >k [kisnegative] = k < —62,500km/h? or equivalently,
k< — 3614285 ~ —4.82m/s%.

79. (a) First note that 90 mi/h = 90 x $230 fi/s = 132 ft/s. Then a(t) = 4 ft/s? = w(t) =4t+ C,butv(0) =0

= (C =0.Now4t =132whent = % = 33 s, so0 it takes 33 s to reach 132 ft/s. Therefore, taking
s(0) = 0, we have s(t) = 22,0 < ¢t < 33. So s(33) = 2178 ft. 15 minutes = 15(60) = 900 s, so for
33 <t <933 wehavev(t) = 132ft/s = 5(933) = 132(900) + 2178 = 120,978 ft = 22.9125 mi.

(b) As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s
and travels 2178 ft at the end of its trip. During the remaining 900 — 66 = 834 s it travels at 132 ft/s, so
the distance traveled is 132 - 834 = 110,088 ft. Thus, the total distance is
2178 + 110,088 + 2178 = 114,444 ft = 21.675 mi.

(c) 45 mi = 45(5280) = 237,600 ft. Subtract 2(2178) to take care of the speeding up and slowing down, and we
have 233,244 ft at 132 ft/s for a trip of 233,244/132 = 1767 s at 90 mi/h. The total time is

1767 + 2(33) = 1833 s = 30 min 33 s = 30.55 min.

(d) 37.5(60) = 2250's. 2250 — 2(33) = 2184 s at maximum speed. 2184(132) + 2(2178) = 292,644 total feet
or 292,644 /5280 = 55.425 mi.

4 Review

CONCEPT CHECK

1. A function f has an absolute maximum at z = c if f(c) is the largest function value on the entire domain of f,
whereas f has a local maximum at c if f(c) is the largest function value when « is near ¢. See Figure 4 in
Section 4.1.

2. (a) See Theorem 4.1.3.

(b) See the Closed Interval Method before Example 8 in Section 4.1.
3. (a) See Theorem 4.1.4.

(b) See Definition 4.1.6.



63.

65.

67.

n

7.

15,

SECTION 4.10  ANTIDERIVATIVES

a(t) = v'(t) = 10sint + 3cost = wv(t) = —10cost+ 3sint+C =

o a0

s(t) = —10sint —3cost+Ct + D. s(0) = =3+ D =0and s(2n) = -3+ 27C+D =12 = D =3and

C = &. Thus, 5(t) = —10sint — 3cost + £¢ + 3.

(a) We first observe that since the stone is dropped 450 m above the ground, v(0) = 0 and s(0) = 450.
v(t)=a(t) = —-98 = wv(t)==-98t+C.Nowv(0)=0 = C=0,50v(t) =—-98 =
s(t) = —4.9t* + D. Last,5(0) =450 = D =450 = s(t) =450 — 4.9t

(b) The stone reaches the ground when s(t) = 0. 450 —4.9t> =0 = > =450/4.9 =

450/4.9 ~ 9.58 s.

(c) The velocity with which the stone strikes the ground is v(¢1) = —9.84/450/4.9 ~ —93.9 m/s.

(d) This is just reworking parts (a) and (b) with v(0) = —5. Using v(t) = —9.8t + C,v(0) = -5 =
0+C=-5 = wv(t)=—9.8t—5. Sos(t)=—49t>—5t+ Dands(0) =450 = D =450
s(t) = —4.9t% — 5t + 450. Solving s(t) = 0 by using the quadratic formula gives us

= (5++/8845)/(-9.8) = t ~9.09s.

By Exercise 66 with a = —9.8, s(t) = —4.9t% 4 vot + so and v(t) = &' (t) = —9.8t + vp. So

[w(®)]* = (—9.8t + v0)* = (9.8)° #* — 19.6v0t + v¢ = v + 96.04t> — 19.6v0t = & ~ 19.6(—4.9t> + vot).

But —4.9t% + ot is just s(¢) without the so term; that is, s(t) — so. Thus, [v(t))* = v3 — 19.6 [s(t) — so).

Using Exercise 66 with @ = —32, vo = 0, and so = h (the height of the cliff ), we know that the height at time ¢ is

s(t) = =16t + h. v(t) =s'(t) = —32tand v(t) = —120 = —32t=-120 = ¢=3.75,50
0=s(3.75) = —16(3.75)> + h = h=16(3.75)% = 225 ft.

Marginal cost = 1.92 — 0.002z = C'(z) = C(z) = 1.92z — 0.001z* + K. But

C(1) =1.92-0.001 + K =562 = K = 560.081. Therefore, C(x) = 1.92z — 0.001z? + 560.081
C(100) = 742.081, so the cost of producing 100 items is $742.08.

Taking the upward direction to be positive we have that for 0 < ¢ < 10 (using the subscript 1 to refer to

=

0<t<10),ai(t)=—(9—09¢t) =vj(t) = wi(t)=—9t+ 0.45t% + vo, butv1(0) =wo = —10 =

vi(t) = —9t+0.45¢> —10 = 51 (t) = s1(t) = —2t° + 0.15t> — 10t + so. But 51(0) = 500 = sp =

s1(t) = —3t% 4+ 0.15t> — 10t + 500. s1(10) = —450 + 150 — 100 4 500 = 100, so it takes more

than 10 seconds for the raindrop to fall. Now for ¢ > 10, a(t) = 0 = v'(t) =

v(t) = constant = v1(10) = —9(10) + 0.45(10)% — 10 = —55 = w(t) = —B55. At 55 ft/s, it will take
100/55 == 1.8 s to fall the last 100 ft. Hence, the total time is 10 + <2 100 = 3 ~11.8s.

a(t) = k, the initial velocity is 30 mi/h == 30 - gggg = 44 ft/s, and the final velocity (after 5 seconds) is

50 mi/h = 50 - 3280 — 220 ft/s Sov(t) = kt + C andv(0) =44 = C =44. Thus,v(t) =kt +44 =

v(5) = 5k + 44. Butv(5) = 220, 505k - 44 =20 = 5k=5 = k=25 ~587ft/s%
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1.

13.

15.

17,

True. The graph of one such function is sketched.

0| x
True. Letx; < w2 where 21,22 € I. Then f(z1) < f(z2) and g(z1) < g(z2) (since f and g are increasing on
D), 50 (f +g)(w1) = f(z1) + g(z1) < f(@2) + g(2) = (f + 9)(22)-
False. Take f(z) = 2 and g(z) = « — 1. Then both f and g are increasing on (0, 1). But f(z)g(x) = z(x — 1)
is not increasing on {0, 1).
True. Letxy,z2 € I and 21 < 2. Then f(z1) < f(z2) (f is increasing) =
1
flz1) = flz2)
True. By the Mean Value Theorem, there exists a number ¢ in (0, 1) such that

(1) = f£(0) = f'(¢)(1 = 0) = f'(c). Since f'(c) is nonzero, f(1) — f(0) # 0, s0 f(1) # f(0).

(fis positive) = g(z1) > g{m2) = g(z) =1/f(x) is decreasing on I.

EXERCISES

1.

- flz) =

 flz) =10+ 27Tz — 2%, 0 <z < 4. f'(z) =27 - 32° = —3(2® - 9) = —3(z + 3)(x — 3) = 0 only when

z = 3 (since —3 is not in the domain). f(x) > 0for z < 3 and f'(x) < 0 for z > 3, s0 f(3) = 64 is a local
maximum value. Checking the endpoints, we find £(0) = 10 and f(4) = 54. Thus, £(0) = 10 is the absolute
minimum value and f(3) = 64 is the absolute maximum value.

O R
x?24+x+1’

_ oo (@ et —a@e+1) -2
2<z<0 f'(2)= (@ + 2+ 1) "(m2+x+1)2—0 -

z = —1 (since 1 is not in the domain). f'(z) < 0 for ~2 < z < —land f'(z) > Ofor —1 < 2 < 0, s0

F(—1) = —1is a local and absolute minimum value. f(—2) = —2 and £(0) = 0, s0 f(0) = 0 s an absolute

maximum value.

. f(@) =z +sin2z, [0,7]. f/(g) =14+2co822==0 & cos2x=-% & =L o o z=3

3
or 2=, f"(z) = —4sin2z, 50 f(5) = ~4sin & = —2v/3 < Oand /(%) = —4sin & =23 > 0,50
f(E)=%+ ﬁéi ~ 1.91 is a local maximum value and f (%) = 2% — 3@ 2 1.23 is a local minimum value. Also

£(0) = 0and f(m) = , so f(0) = 0 is the absolute minimum value and f () =  is the absolute maximum

value.
im tanrz o msecmx -1 —
“amoln(l+a) eo01/(1+a) 11
4 _ 4z 4
i & LA K de TR g 100 g gete — g1
z—0 x z-+0 2 z—0 2 z—0
3 2
lim 2% = lim & 2 lim 2% 2 iy 28 5y &

z—00 z—o0 €% z—oo €% xz—o0 €% x—oo €%
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. (a) See Rolle’s Theorem at the beginning of Section 4.2.

(b) See the Mean Value Theorem in Section 4.2. Geometric interpretation—there is some point P on the graph of
a function f [on the interval (a, b}| where the tangent line is parallel to the secant line that connects (a, f(a))
and (b, f(b)).

. (a) See the I/D Test before Example ! in Section 4.3.

(b) See the Concavity Test before Example 4 in Section 4.3.

. (a) See the First Derivative Test after Example 1 in Section 4.3.
(b) See the Second Derivative Test before Example 6 in Section 4.3.

(c) See the note before Example 7 in Section 4.3.

. (a) See 'Hospital’s Rule and the three notes that follow it in Section 4.4.
. f g
(b) Write fg as — or —=-.
/g~ 1/f
(c) Convert the difference into a quotient using a common denominator, rationalizing, factoring, or some other

method.

(d) Convert the power to a product by taking the natural logarithm of both sides of y = f9 or by writing f¢
as ed'n 7,

. Without calculus you could get misleading graphs that fail to show the most interesting features of a function.
See the discussion following Figure 3 in Section 4.5 and the first paragraph in Section 4.6.

. (a) See Figure 3 in Section 4.9.

_ flz1)

(b) 2 =1 — m
_ J(zn)
f'(@n)

(d) Newton’s method is likely to fail or to work very slowly when f'(z1) is close to 0.

©) Tnt1 = Tn

. (2) See the definition at the beginning of Section 4.10.

(b) If F; and F> are both antiderivatives of f on an interval I, then they differ by a constant.

TRUE-FALSE QuIZ

. False. For example, take f(z) = z>, then f'(x) = 3z? and £'(0) = 0, but £(0) = 0 is not a maximum or

minimum; (0, 0) is an inflection point.

. False. For example, f(z) = x is continuous on (0, 1) but attains neither a maximum nor a minimum value on

(0,1). Don’t confuse this with f being continuous on the closed interval [a, b], which would make the
statement true.

. True. This is an example of part (b) of the I/D Test.
. False. f'(z)=g'(z) = f(z)=g(z)+ C.Forexample, if f(z) =z + 2 and g(z) = z + 1, then
f(z) = g'(z) = L, but f(z) # g().
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23.

25.

21.

1
y=f(z) = P A. D={z|z+#0,3} = (~00,0) U (0,3) U (3,00) B. No intercepts.
C. No symmetry. D. lim —1—~0 soy =0 isaHA lim————l——oo
) i 9 z(x—3)2 7 V= C oot x(z—3)2 0
: 1 1
lim ——— oohm——:oo, sox = 0and z = 3 are VA.
s—0— x(x — 3)2 z—3 z(z — 3)?
-3 +25(x—3) 31—z
E f'(z) = -8 = \
f'(=) 22(z — 3)° 22(z — 3)°
f(x) >0 <« 1<z<3, 50 isincreasing on (1, 3) and decreasing H. y

on (—o0,0), (0,1), and (3,00) . F. Local minimum value f(1) = %

6(2z° —4x +3
G. f//(m):_(mg)_) Note that 2% — 4z + 3 > 0 forall z jo >
since it has negative discriminant. So f”(z) >0 < >0 = fis
=3
CU on (0, 3) and (3, o) and CD on (—o0,0). No IP *
z? 64
y=f(z)= 718 =z —8+ prar A. D={z |z # —8} B. Intercepts are 0 C. No symmetry
D. lim o = oo, but f(z) — (z —8) = 0 — 0 asz — 00,80y = ¢ — 8 is a slant asymptote
CeSer+8 T z+8 SOY = ymptote.
52 2
lim =ooand lim —00, 80 ¢ = —8 is a VA, H. y
z——8+t X+ 8 z—+—8— T+ 8
E. flz)=1- o4 _ﬂ;v(m+16)>0 & z>0o0rz < —16 T
) (z+8)2 (z+8)? ’ o R %
.. . . (—16, =32) | y=x-8
so f is increasing on (—oo, —16) and (0, o) and decreasing on v
(—16,—8) and (~8,0). F. Local maximum value f(—16) = —32, /\

Jocal minimum value f(0) =0 G. f”(z) = 128/(z +8)* >0 <«
% > —8,s0 fis CU on (—8,00) and CD on (—o0, —8). No IP

y=flx)=2+v/2+z A. D=[-2,00) B. y-intercept: f(0) = 0; z-intercepts: —2and 0 C. No
symmetry D. No asymptote E. f'(z) = +V2 4= [r+202+2)] = Ik S
2 f +z \/ +z 2v2+z
when z = —~ , 80 f is decreasing on ( 2, —%) and increasing on (——%, oo). F. Local minimum value
f(-%3)=-%/2= »4—‘9/6_" ~ —1.09, no local maximum H. ¥
1
2vV24x-3—-(3x+4
G f//(m) — ( ) \'4 2 + €T
’ 4(2 + z)
624 x)—(Bz+4)  3x+8 = N
B PR PR (-5

f'(z) > 0forz > —2,s0 fis CUon (—2,00). NoIP
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. z 1 . ghhz—z+1\ lim z-(1/z)+Inz—1
13. lim —— ) = lim =
st \z—1 Inz a1t \ (@ —1)Inz z—>1+ (a: —1)-(1/z) +Inz
Inz H 1/z 1 1

= lim ———2 By =
oo+ I-1jz+Ine oot 1/z2+1jz 141 2

15. f(0) =0, f'(-2) = f'(1) = f'(9) =0, hm f(z) =
ii_xg f(z) = —o0, f'(z) < 0on (—o00,~2), (1,6), and (9, c0),

f'(z) > 0o0n(—2,1) and (6,9), f"(z) > 0on (—o0,0)

and (12, 00), f”(z) < 0 on (0, 6) and (6, 12)

17. fisodd, f'(z) < 0for0 <z <2, f'(z)>0forz > 2, y
f'(z) >0for0<z <3, f'(z)<O0forz>3, N\ =2
limz—eo f(z) = —
X
y=-2
19.y=f(z)=2—-22—2° A. D=R B. y-intercept: f(0) = 2. H. Y

The z-intercept (approximately 0.770917) can be found using Newton’s

/m

Method. C. No symmetry D. No asymptote

E. f'(z) = =2 — 32 = —(32% + 2) < 0, 5o f is decreasing on R.

F. No extreme value G. f”(z) = —6z < 0on (0,00) and f'(z) >0
on (—00,0), so f is CD on (0, o) and CU on {—oc, 0).

There is an IP at (0, 2).

N y=flzr)=xa"-32°+32> —z=2z(r—-1)> A. D=R B. y-intercept: f(0) = 0; z-intercepts: f(z) =
& z=0orz=1 C. Nosymmetry D. f isapolynomial function and hence, it has no asymptote.
E. f'(z) = 42® — 92 + 62 — 1. Since the sum of the coefficients is 0, 1 is a root of f’, so
f(z)=(z-1)(4a® -5z +1) = (z - 1)*(dz — 1). f'(z) <0 = < 3,50 f is decreasing on (—oo, )

and f is increasing on (i, oo) F. f'(z) does not change sign at z = 1, H. ¥
27
27

—35 is alocal minimum

so there is not a local extremum there. f ( %) =
value. G. f’(z) = 122> — 18z + 6 = 6(2z — 1)(z — 1). 1T

f(@)=0 & z=3orl. f'(z)<0 & 3<z<1l =

fisCDon (%,1) and CU on (—oo, 1) and (1, c0). There are inflection

points at (3, —35) and (1,0).
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= (22) — (¢° —1)3a® — 22
B )= Tt » pe= TR R S

4(—2z) — (3 - w2)4m3 B 22?2 — 12
z8 - x5

=

x
(=) =
Estimates: From the graphs of f’ and f”, it appears that f is increasing on (—1.73,0) and (0, 1.73) and decreasing
on (—oo, —1.73) and (1.73, 00); f has a local maximum of about f(1.73) = 0.38 and a local minimum of about
F(—1.7) = —0.38; f is CU on (—2.45,0) and (2.43, 0c), and CD on (~o0, —2.45) and (0, 2.45); and f has
inflection points at about (—~2.45, —0.34) and (2.45,0.34).

2

Exact: Now f'(z) = e

is positive for 0 < z? < 3, that is, f is increasing on (—\/5, 0) and (O, \/3), and

' (z) is negative (and so f is decreasing) on (—oo, —\/5) and (\/5, 00). f'(x) = 0 when z = +v/3. ' goes

2
from positive to negative at x = V3, so f has a local maximum of f (\/§ ) = L%/%)s;l = —2—§; and since f is odd,

we know that maxima on the interval (0, co) correspond to minima on (—oo, 0), so f has a local minimum of

2 -—
f(—V3) = —gé. Also, f" (z) = —zm—xs—E is positive (so f is CU) on (—+/6, 0) and (v/6, 00), and negative

A (so f is CD) on (—oo, —\/6) and (0, \/6) There are IP at (\/5, %—‘{fs) and (—\/é, —%6@).

1 0.2

i

I —° I J

0.2 —0.2

15 —0.25
.
-5 , /A —— f
)

—15 ~04

37, f(z) = 3a° — 5a® + o —52° ~ 222 +2 = f'(z) = 182" — 25z* +4a® — 152" — 4z =
F(z) = 90z* — 100z® + 122* — 30z — 4

75 1 75

-0.5 ﬁ J 0.5

.f, fll

T [N T

—50 —4 -50
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2.y = f(z) =sin’z — 2cosz A. D =R B. y-intercept: f(0) = —2 C. f(—z) = f(z), s0
[ is symmetric with respect to the y-axis. f has period 27r. D. No asymptote
E. y' =2sinzcosz + 2sinz = 2sinz (cosz +1). 4’ =0 < sinz=O0orcosz=-1 & 2z =nmor
z = (2n+ 1)w. y' > 0 when sinz > 0, since cos z + 1 > 0 for all . Therefore, 3’ > 0 (and so f is increasing)
on (2n7, (2n 4 1)7); 3’ < 0 (and so f is decreasing) on ((2n — 1)7,2nx). F. Local maximum values are

f((2n + 1)m) = 2; local minimum values are f(2n7) = ~2. G. y’ =sin2z + 2sinz =
v’ =2cos2z +2cosz =2(2cos’z — 1) + 2cosz = 4cos’ z + 2cosx — 2
=2(2cos’z + cosz — 1) = 2(2cosz — 1)(cosz + 1)

¥'=0 & cosz=j0r-1 & z=2nr+Forz=(2n+ )7 y” > 0(and so f is CU) on
(2nm — §,2n7 4+ 5 ); 4" <0 (and so f is CD) on (2n7 + %, 2n7 + 22 ). There are inflection points

at (2nm+ %, -1).

WaNVay
v \V "\

Ny=f(z) =sin"(1/z) A D={c|-1<1/x<1}=(—00,—1]U[l,00). B. No intercept
C. f(—z) = —f(z), symmetric about the origin D. linI:l sin"'(1/z) = sin™! (0) = 0, so y = O is a HA.
T— o0

E. f'(z) = 1 ( L > - = < 0, s0 f is decreasing on (—co, —1) and (1, 00) .

1- (/22 \ 22) Vai—o2
F. No local extreme value, but f(1) = % is the absolute maximum value H. :

and f(—~1) = —Z is the absolute minimum value. 2 k
3 _ z(2z° — 1 Y :

G. f'(z)= do -2 . ( 2 > 0forz > 1and \ _Lr

2(zt — w2)3/2 (x4 — 12)%/2 2

f'(z) < 0forz < —1,s0 fis CUon (1, 00) and CD on (—o0, —1).

NoIP

3B.y=f(z) =e"+e* A. D=R B. y-intercept 2; no z-intercept C. No symmetry
D. Ill)rjlzloo (€® +e7%) = co,no asymptote E. y = f(z) =e* +e73° =
flg)=e"—3e =¥ -3)>0 & e*>3 & H. y
4r>In3 & =z > :In3~0.27,50 f is increasing on (1 In 3, c0)
and decreasing on (—oo, § In3). 2
F. Absolute minimum value f(% In 3) = 31/4 1 373/ » 1.75.
G. f(z) = €® +9e73% > 0,50 f is CU on (—o00, 00). No IP
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45,

47,

49,

51.

f(z) = 2% + 2% 4+ — 1 = 0. Since f is continuous and f(0) = —1 and f(1) = 2, the equation has at least one
root in (0, 1), by the Intermediate Value Theorem. Suppose the equation has two roots, a and b, with @ < b.

Then f(a) = 0 = f(b), so by the Mean Value Theorem, there is 2 number  in (a, b) such that
_f®)—fla) _ 0

fl(z) = T, T F-a- 0, so f' has aroot in (a, b). But this is impossible since

#(z) = 1012 + 512°° + 1 > 1forall z.

Since f is continuous on [32, 33] and differentiable on (32, 33), then by the Mean Value Theorem there exists a

5 5
number c in (32, 33) such that f'(c) = %c‘4/5 = [g%?:—éﬁ = /33 — 2, but %0_4/5 >0 = v33-2>0

= ¥33 > 2. Also f' is decreasing, so that f'(c) < f'(32) = £(32)"*/®* = 0.0125 =

0.0125 > f'(c) = V33 —2 = /33 < 2.0125. Therefore, 2 < /33 < 2.0125.

@ g(z) = f(=*) = g¢'(z)=2xf (z?) by the Chain Rule. Since f’(z) > 0 for all z # 0, we must have
f (202) >0forz#0,50g () =0 < x=0.Now g'(z) changes sign (from negative to positive) at
z = 0, since one of its factors, f’ (m2), is positive for all z, and its other factor, 2z, changes from negative to
positive at this point, so by the First Derivative Test, f has a local and absolute minimum at x = 0.

®) ¢'(z) = 2zf'(«*) = g¢'(x) =2[zf" (%) (2z) + ['(«*)] = 4z f" (z*) + 2f' («®) by the Product Rule
and the Chain Rule. But z2 > 0 for all z # 0, f”(z*) > 0 (since f is CU for « > 0), and f'(#*) > 0 for all

z # 0, so since all of its factors are positive, g (z) > 0 for & # 0. Whether g (0) is positive or 0 doesn’t

matter (since the sign of g’ does not change there); g is concave upward on R.

_ . . ! _ C . C| _|Azi+ By +C|

If B = 0, the line is vertical and the distance from z = 'y to (z1,y1) 1s |x1 + Z‘ e _WZ—T—B—?—’ 0

assume B # 0. The square of the distance from (z1, y1) to the line is f(z) = (z ~ z1)? + (y — y1)? where
- 2 A C 2

Az + By + C = 0, so we minimize f(z) = (z — z1)" + A =

2 — pa—
flx)=2(z—z1)+2 —éx—g—yl ——f.-i fl@)=0 = z= Bl — ABy, — AC and this gives
B B B A? + B2

2

a minimum since f'(z) = 2 (1 + %) > 0. Substituting this value of z into f(z) and simplifying gives

(Az1 + By + C)?
A2 +B2

_ |Az1 + By + C|

flo) = WrEYH

, so the minimum distance is / f(x)
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From the graphs of £’ and f”, it 100 25
appears that f is increasing on
(—0.23,0) and (1.62, 00) and ! )
decreasing on (—o0, —0.23) and _ ; .

. 15[ ~ /25 s s
(0,1.62); f has a local maximum of -25 ’ 0.8 -

about f (0) = 2 and local minima

of about f(—0.23) = 1.96 and f(1.62) = —19.2; f is CU on (—o0, —0.12) and (1.24, co) and CD on
(—0.12,1.24); and f has inflection points at about (—~0.12, 1.98) and (1.24, —12.1).

1 From the graph, we estimate the points of inflection to be about
(£0.82,022). f(z)=e™V/* = fl(z)=20"3V" =
fll(w) =2 [$—3(2x—3)e—1/x2 + 6—1/7:2 (_31;_4)]

= 21—66_1/‘”2 (2 -~ 3:1:2).

=5 5
0 ThisisOwhen2 -3z’ =0 & z= j:\/g, so the inflection points

are (:l:\/g, e“3/2).

f(z) = arctan(cos(3 arcsin z)). We use a CAS to compute f’ and f”, and to graph f, f’, and f":

1 4 10

alira el
Y O Bt

-1 -4 =11

From the graph of f', it appears that the only maximum occurs at z = 0 and there are minima at z = £0.87.

From the graph of f/, it appears that there are inflection points at z = £0.52.

. The family of functions f(z) = In(sin z + C) all have the same 2 Cc=3 (C=2

period and all have maximum values at z = § + 27n. Since the
domain of In is (0, 00), f has a graph only if sinz +C > 0 2 7
somewhere. Since —1 < sinz < 1, this happens if C' > —1, that
is, f has no graph if C' < —1. Similarly, if C > 1, then

sinz + C > 0 and f is continuous on (—o0, 00). As C increases,

A
-05 0 1
the graph of f is shifted vertically upward and flattens out.
If —1 < C <1, fisdefined wheresinz — C >0 < sinz>-C & sin”'(-C) <z <7 —sin”'(-C).

Since the period is 2, the domain of f is (2n7 + sin™*(~C), (2n + 1)7 — sin™* (—C)), n an integer.
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61.

63.

65.

67.

69.

n.

13.

fz)=2°—3"+32> -32—-2 = f(z)=hz*—42%+62-3,50
3 — 2t + 322 — 3z, —2
5x4 — 423 + 6z, — 3

Tntl = Tp — .Nowz1 =1 = xz2=15 = z3=1.343860 =

r4 &~ 1.300320 = x5 ~1.297396 = ¢ ~ 1.297383 =~ z~, so the root in [1, 2] is 1.297383, to six

decimal places.

f@) =cost+t—t* = f'(t)=—sint+1—2t f'(t)exists 3

for all £, so to find the maximum of f, we can examine the zeros of f'. [ f 1
From the graph of f', we see that a good choice for #1 is 1 = 0.3. -3 3
Use g(t) = —sint + 1 — 2t and ¢’(t) = — cost — 2 to obtain { \ J
ta & 0.33535293, t3 ~= 0.33541803 = t4. Since

f(t) = —cost — 2 < 0 forall , £(0.33541803) ~ 1.16718557 is

the absolute maximum.
Fl@)=Vad —4/¥x =272 —da™/* = f(z)= 22"/ —4(2—;104/5) +C =222 —52*5 + C

F@) = e — (2/yT) = € — 2072 =

. —1/241 . a2
flx)=¢€"— +C=e€" —-2——

f'(t) =2t —3sint = f(t)=1t>+3cost+C.

f(0)=3+Cand f(0)=5 = C=250f(t)=t>+3cost+2.

fllz)=1-62+482 = fl(x)=2—-32*+-162°+C. f(0)=Candf(0)=2 = C =250
f'(z) =z — 32”4+ 162® + 2 and hence, f(z) = 32° —2° +4z* + 22+ D. f(0)=Dand f(0)=1 =
D=1,50 f(z) = 1a® — 2® + 4a* + 2z + 1.

(a) Since f is 0 just to the left of the y-axis, 5 y

we must have a minimum of F' at the

same place since we are increasing

through (0,0) on F'. There must be a » L " J4 /\

local maximum to the left of £ = —3,

—2

since f changes from positive to negative
there.

(b) f(z) =0.1e" +sinz = F(z)=0.1e" —cosz+ C. (<) 5
F0)=0 = 01-14+4C=0 = (C=09,5s0
F(z) =0.1¢® —cosz + 0.9.
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53. By similar triangles, Y , so the area of the triangle is
z x? — 2rz
T 2
T
\“_xz— 2rx ( ) 2( y) Y m
x—r
, x A(z) = Z2YT e —re’(@ 1)/ Va? ~ e
B 2 — 2rz
2 —
r =m3_r)zowhena’::3r,
S (z2 ~ 2rz)®/?

2 A'(z) < 0when2r < z < 3r, A'(z) > 0whenz > 3r. Soz = 3r
gives a minimum and A(3r) = r(9r?)/(V3r) = 3377
55. We minimize
< T L(z) = |PA| + |PB| + |PC| = 222 +16 + (5 - x),
. 0<z<5L(z)=22/\/z?+16 -1=0 <«
N l w=vV22+16 & 4r’=21+16 < m:%.
AT D s B
L(0) = 13, L(% ~ 11.9, L(5) ~ 12.8, so the minimum

— 4
occurs when x = 75 2.3.

L C dv K 1 C

1_ _C 2 2
dL = 2 /(L)0) + (O/p)\C ~ I? =p ¢ =0 e

1
cTI?

L = C. This gives the minimum velocity since v’ < 0 for0 < L < C and v’ > 0 for L > C.

59. Let x denote the number of $1 decreases in ticket price. Then the ticket price is $12 — $1(x), and the average

attendance is 11,000 + 1000(z). Now the revenue per game is
R(zx) = (price per person) X (number of people per game)
= (12 — 2)(11,000 + 1000z) = —1000z2 + 1000z + 132,000

for 0 < z < 4 (since the seating capacity is 15,000) = R'(z) = —-2000z+1000=0 <« z=0.5.
This is a maximum since R” (z) = —2000 < 0 for all z. Now we must check the value of

R(z) = (12 — z)(11,000 + 1000z) at z = 0.5 and at the endpoints of the domain to see which value of =
gives the maximum value of B. R(0) = (12)(11,000) = 132,000, R(0.5) = (11.5)(11,500) = 132,250, and
R(4) = (8)(15,000) = 120,000. Thus, the maximum revenue of $132,250 per game occurs when the average

attendance is 11,500 and the ticket price is $11.50.
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kcos® _ k(h/d) h h h
d? d? a3 (V302 12 )3 (1600 + h2)3/2

dr _, (1600 + h2)*% — b2 (1600 + h?)/* - 21 k (1600 + h%)"/* (1600 + h* — 3h?)
h (2600 w2)?/2]” (1600 -+ 72’

k(1600 — 27%)

= W [k is the constant of proportionality]
+

SetdI/dh =0:1600 —2h> =0 = h*>=800 = h = /800 = 20+/2. By the First Derivative Test,

I has a local maximum at h = 20 \/§ =~ 28 ft.

(b)
dr
"LE —4.ft/S
__kcos®  k[(h—4)/d] _k(h—4) _ k(h —4) _ 2 g1-8/2
I= 2 42 - 43 = 1:(]1—4)2 -|—1172]3/2 =k(h 4) [(h )+ ]
ar _dl dz _ A3 Y 27-5/2 dz
i ri i G o (U R B~
—s2 . —12zk(h—4)
= k(h—4)(=3z)[(h— )2 +2?] % 4= 20
( I )[( ) ] [(h—4)2 +x2]5/2
alr __ 480k(h—4)
dt|,_4  [(h—4)2 + 1600]°/?
__:13_- -1 _ -1, T
81. We first show that 15 a2 < tan "tz forz > 0. Let f(x) =tan™ x 7 Then
y 1 1(1+2?) —z(2z) (1+2%) - (1~ ?) 222 '
- - = = >0forz >0.8
O =1 =~ ray d+2) @xarp > Ofore >0 S0 5@

increasing on (0, 00). Hence, 0 <z = 0= f(0) < f(z) = tan™t 2 <tan"'z

2 g0 =
1422 1422
for 0 < z. We next show that tan™' & <  for z > 0. Let h(z) =  — tan™" z. Then

2
W(z)=1- ﬂl_mi = ﬁﬁ > 0. Hence, h(z) is increasing on (0, c0). So for 0 < =,

0 = h(0) < h(z) = = — tan™ " =. Hence, tan™! & < z for z > 0, and we conclude that T% <tanlz <z

for z > 0.
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75. Choosing the positive direction to be upward, we have a(t) = —9.8 = v(t) = —9.8t + vo, but v(0) = 0 = v

= vt)=-98t=s(t) = s(t)=—-4.9t2+ 50, buts(0) =so =500 = s(t)=—4.9t> + 500. When

5=0,-49t2+500=0 = t1=,/%0~101 = ov(t)=-9.8,/22 ~ —98.995 m/s. Since the

canister has been designed to withstand an impact velocity of 100 m/s, the canister will not burst.

71. (a) y The cross-sectional area of the rectangular beam is
2432 =100
. A=2z.2% = doy = 4e /100 — 72,0 < 2 < 10, s0
Y
s 92— 40(3) 100~ #%) 72 (~20) + (100 - 2) /2 -4
X
—4x° 1/2
= ——— +4(100 — z*
(100 _ $2)1/2 ( )
_4[-2® + (100 — 2?)]
(100 — z2)/?
aA

dm:Owhen—m2+(1OO—x2)=O = 2°=50 = z=v50m7.07 =
y

=4/100 — (\/5_6)2 = +/50. Since A(0) = A(10) = 0, the rectangle of maximum area is a square.

(b) y The cross-sectional area of each rectangular plank (shaded in the figure) is
] y A=2z(y—50) = 22[v/100 — 22 — v/50],0 < = < /50, s0
50 -
VS0 44 o (VIBO =2 — v/50) + 2¢(1) (100 ~ ) V/* (~20)
of x x dz 2
212
=2(100 ~ 22)"/* — 2/50 - —2—
( ) (100 _ $2)1/2

Set % =0: (100 —2?) — v50(100 —2*)"/* —2* =0 = 100 — 22* = v/30(100 — 2*)"/* =
10,000 — 4002* + 4z* = 50(100 — z*) = 4z — 3502 +5000 =0 =

9t — 1752> + 2500 =0 = z° = %———— V10625 60520r17.98 = =z~ 8.340r4.24.

But 8.34 > v/50,s0 21 &~ 4.24 = 1y —+/50 = /100 — z7 — /50 = 1.99. Each plank should have

dimensions about 83 inches by 2 inches.

(c) From the figure in part (a), the width is 2z and the depth is 2y, so the strength is

S = k(2z)(2y)? = 8kay? = 8kxz(100 — 2°) = 800kz — 8kz®, 0 < z < 10. dS/dz = 800k — 24ka” = 0
when 24kz® =800k = =12 = z= % => y=,/8= 1—0\/-332 =+/2x. Since
5(0) = S(10) = 0, the maximum strength occurs when & = \1/—%. The dimensions should be

% ~ 11.55 inches by %-? ~ 16.33 inches.
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9. A= (ml, :1:%) and B = (wz, w%), where 21 and z2 are the solutions of the quadratic equation 22 =maz + b. Let
P = (z,2%) and set A1 = (z1,0), B1 = (22,0), and P = (2,0). Let f(z) denote the area of triangle PAB.

Then f(x) can be expressed in terms of the areas of three trapezoids as follows:
f(z) = area (A1 ABB:) — area (A|APP1) — area (B1 BPP1)
= %(m% +m§)(m2 —z) — %(ﬁ +m2)(m —x1) — %(wQ +x§)(az2 — )
After expanding and canceling terms, we get
flx) = %(mzm% — 123 — 223 + z2? — Tox? + xm%) = %[ﬁ(wz —z)+ x%(m —z1) + 552(931 - 332)]
f(z) =3[~} + 23 + 22(z1 — 22)]. f'(2) = L[2(z1 — @2)] = 21 — x2 < 0 since 22 > 1.
Fl@)=0 = 2z(m —xz)=2i-25 = zp=3(@+22)
Fl@p)=3(2? [L(z2 — 21)] + 23 [3(z2 = 21)] + 3 (@1 + @2)* (w1 — 22))
= % [%(wz — iEl)(m% + w%) . %(132 —z1)(z1 + 5112)2]
= Lz — z1)[2(a] + 23) — (21 =~ 2mam2 + 3)]
= (s — z1) (2} ~ 2z1m2 + 23) = (@2 — 21) (w1 — 22)* = (22 — @) (w2 — z1)?
= 3(z2 — =)’

To put this in terms of 7 and b, we solve the systern y = z? and y = ma1 + b, giving us 2 —mz, —b=0 =

Wl

T1 = (m — \/—fr—nz_—l——@) Similarly, 2 = %(m + \/m) The area is then
3(z2 — z1)® = 3 (m)3, and is attained at the point P(zp, zh) = P(im, im?).
Note: Another way to get an expression for f(z) is to use the formula for an area of a triangle in terms of the
coordinates of the vertices: f(z) = 1 [(z2a7 — z123) + (z12% — za?) + (za3 — z22”)].

1. f(z) = (a®* +a—6)cos2z + (a — 2z +cosl = f(z)=— (a® + a — 6)sin2z (2) + (a — 2).
The derivative exists for all , so the only possible critical points will occur where fllx)=0 <

2(a —2)(a+3)sin2z =a—2 < eithera = 2 or 2(a + 3) sin 2z = 1, with the latter implying that

sin 2z = Since the range of sin 2z is [—1, 1], this equation has no solution whenever either

2(a+3)’

2—(5%’5 < —lor m > 1. Solving these inequalities, we get —% <a< —g.
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1. Lety = f(z) = e™*". The area of the rectangle under the curve from —z to z is A(z) = 2ze™" where z > 0.
We maximize A(z): A'(z) = 2" — 4dz%e™® = 2™ (1-22%)=0 = z= 5~ This gives a maximum
since A'(z) > 0for0 <z < % and A'(z) < Oforz > % We next determine the points of inflection of f(z).

. ’ _ —z2 17" _ ’ 7 1 1
Notice that f'(z) = —2ze™" = —A(z). So f"(z) = —A'(z) and hence, f”(z) < 0 for —75 <z < 5 and
f'(z) >0forz < —% andz > % So f(z) changes concavity at z = :I:%, and the two vertices of the

rectangle of largest area are at the inflection points.

ex+y x

e” ¥ .
>e® & — .— >e-e. This suggests that we
r Yy

3. First, we recognize some symmetry in the inequality:

T Y
need to show that e; > e for z > 0. If we can do this, then the inequality % > eis true, and the given inequality

= T _ LT x -1
follows. f(z) = % = flla)y=2 - e’ _ ¢ (iz )

=0 = z = 1. By the First Derivative Test, we
have a minimum of f(1) = e, so e”/z > e forall z.

5. First we show that (1 ~ z) < 1 forall z. Let f(z) = (1 — ) = ¢ — 2°. Then f’(z) = 1 — 2z. This is 0 when
z =3 and f'(z) > 0forz < 3, f/(z) < Oforz > %, so the absolute maximum of fis f(%) = 1. Thus,
z(1—z) < § forall z.

Now suppose that the given assertion is false, that is, a(1 — b) > % and b(1 — a) > . Multiply these
inequalities: a(l —b)b(1—a)> 75 = [a(l —a)][b(1 —b)] > . But we know that a(1 — a) < % and

b1-b) <3 = [a(l—a)][b(1—1b), < . Thus, we have a contradiction, so the given assertion is proved.

7. Differentiating 22 + zy + y? = 12 implicitly with respect to  gives 2z + y + Z—Z + 2y % =0,s0

_dg _ 2z+y

B . At a highest or lowest point, dy =0 & 1y = —2z. Substituting —2z for y in the original
dz T+ 2y

dz

unation gives z° + z(—2z) + (—2z)2 = 12,503z =12 and z = +2. If z = 2, theny = —2z = —4, and if
eq g

z = —2 then y = 4. Thus, the highest and lowest points are (—2,4) and (2, —4).

215
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17. Note that f(0) = 0, so for z # 0, fz )—f(O)‘ - () _ =)l |sina:} _ $03
-0 z lz] — |z z
Therefore, |f/(0)] = |lim f—(m)—‘f@’ = lim | L )_ f (0)‘ SBT _ 1 But
x—0 z—0 z—0 m——>0 T

f'(x) = a1 cosz + 2a3 cos 2z + - - - + na, cosna, so | f/(0)] = la1 + 2a2 + - -+ + nay| < 1.

Another solution: We are given that |>7_, ax sin kz| < |sinz|. So for x close to 0, and z # 0, we have

n sinkxz| ) " sinkz nkz
ak <1 = lim ar— <l = Z ax lim 2 < 1. But by I’Hospital’s Rule,
ke1 sinz | z—0 |7 sinz p—1 =0 sinzx
. sinkx . kcoskzx 7 )
lim — = lim =k, 50> kar| <1
z—0 sz z—0 CosSx k=1

D
19. (a) Distance = rate x time, so time = distance /rate. Th = —

>

C1
2|PR| |RS| 2hsec@ D —2htané 2\/Rh2+ D2/4  JAR2 + D2
T = + = + I3 = = S
C1 C2 C1 Ca C1 Ci
(b) @ = % -sec tan 6 — = sec? 6 = 0 when 2h secd (l tanf — L sec@) =0 =
C1 C2 Cy, C2
i —SILH — l = = 2todd = —1— = ginf = C—l. The First Derivative Test shows that
c1cosf ¢z cos 0 c1cosf  caeosf c2

this gives a minimum.

(¢) Using part (a) with D = 1 and Ty = 0.26, we have T} = = =

C1
4% + D2

Cc1 = 0_126 ~ 3.85 km/s. T3 = )

= 4h?+D? =Tic =

=1/T3c2 — D2 = 1,/(0.34)2(1/0.26)2 - 12 ~ 0.42 km. To find ¢3, we use sin § = % from part (b)

and Th = 2hsech + D=Gltang from part (a). From the figure,
Ci Cc2

. C C C
sinf==1 = sech= 2 and tanf = L

2 __ 2 2 _ 2
C2 c5 ~ cf Ve —cf

T 2hea D\/ —c2 —2hc 4
5 = :
\/cz—c1 can/c2 — c?

, SO

(2
Using the values for T} [given as 0.32], k, c1, and D, we can graph Vi —cf
2h D/ 2h .. . : : :
Yi=T2and Yy = = ¢ — c] < and find their intersection points. Doing so gives us
/2 —c} e2/G ~ ¢

c2 & 4.10 and 7.66, but if ¢z = 4.10, then 6 = arcsin(c1 /cz) ~ 69.6°, which implies that point S is to the left
of point R in the diagram. So ¢z = 7.66 km/s.
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(@) Lety = |AD|,z = |AB|, and 1/a: = |AC|, so that |AB| - |AC| = 1. B

We compute the area A of AABC in two ways. First,

D
X
A=1|AB||AC|sinZ = 1.1. = Y3 Second, A
c

A = (area of AABD) + (area of AACD) 4 1

= 3 |AB||AD|sin % + 3 |AD{|AC|sin %

= 3w g + Ju(1/2) F = Fyle+1/2)
Equating the two expressions for the area, we get %y(ac + i) e ? & y= ;——%——11/_33 = %—H z > 0.

Another method: Use the Law of Sines on the triangles ABD and ABC. In AABD, we have
LA+ /ZB+ /4D =180° & 60°+a+ 4D =180° <« 4D = 120° — o. Thus,

z _ sin(120° — )  sin120° cos @ — cos 120° sina —‘ég cosa + 2sina T _ s "
- = ) = ; = . = — =5 cot o + 5
Y sina sina sin o Y

and by a similar argument with AABC, Boota =gz + 1. Eliminating cot « gives L= (o2 +H+1i =
y 24 2 Yy 2 2

(b) We differentiate our expression for y with respect to x to find the maximum:

dy _ (®+1) —22z) 1-4°

& @1 @1

= 0 when = = 1. This indicates a maximum by the First Derivative

Test, since ' (z) > 0for 0 < x < 1and y'(x) < 0 for z > 1, so the maximum value of y is y(1) = 1.

Suppose that the curve y = o intersects the line y = . Then a®° = x for some zo > 0, and hence a = a:(l)/ 0,

We find the maximum value of g(x) = /%, > 0, because if a is larger than the maximum

value of this function, then the curve y = a® does not intersect the line y = .

g (x) = /@ ne (———15 Inz + 1 %) =gl/® (;1—2>(1 —Inz). Thisis O only where z = ¢, and for 0 < z < e,
x z

f'(x) > 0, while for z > e, f'(x) < 0, so g has an absolute maximum of g(e) = €'/, So if y = a® intersects

/¢, Conversely, suppose that 0 < a < e*/°. Then a® < e, so the graph of y = a®

y=x,wemusthave 0 < a < e
lies betow or touches the graph of y = x at x = e. Also a® = 1 > 0, so the graph of y = a® lies above that of

y = x at £ = 0. Therefore, by the Intermediate Value Theorem, the graphs of y = a® and y = = must intersect

somewhere betweenz = 0 and x = e.
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; d . Let a = |EF| and b = | BF| as shown in the figure.
B _d-x E «x e Since £ = |BF| + |FD|, |FD| = £ — b. Now
> a /, |ED|=|EF|+|FD|=a+4£~b

F =Vr2—a24+L—+/(d~1x)? +a?
=\/r2—$2+l—\/(d—m)2+ (\/rz—m2)2
=12 — g2 + £ —\/d? - 2dz + 2% + 12 — 22

Let f(z) = V12 — a2 + £ — v/d? + r2 — 2dz.
£1@) = 1 = 2% A (-2m) - 4@ 4+ - 20) VA 2) = g fz —.
x? d?
\/_ m T o2 Etrr-2dz
d*c® + r?0? — 2dz® = d%r? — 4% = 0= 2d2® - 2d%c® —r?2® + d*? =
0=2da?(z —d)—r*(z? —d*) = 0=2d2%@z—d)-r’@z+d){z—d) =
= (z — d)[2dz® — r*(z + d)]
Butd > r > z, so z # d. Thus, we solve 2dz® — r’z — dr® = 0 for z:

:E (7'2 )" —4(2d)(—dr? Vv emr-y o
T = \/ 2(2d) ) ) T' ++/r +8d T . Because /,,.4 +8d27.2 > Tz,the “negative”

fliz)=0 =

can be discarded. Thus,

P VEVETEE P /O IEE

4 = id (r>0)

= galr+ Ve 82 )

The maximum value of | ED| occurs at this value of x.

dV dr dv dV
— 4.3 hadl 2 e i L =k. 2
V=31 & o 47r prt . But pr proportional to the surface area, so n k - 4mr* for some
constant k. Therefore, 4772 —-—Z: =k-drr’® <« ———3; = k = constant. An antiderivative of k with respect to ¢ is

kt,sor = kt + C. When t = 0, the radius r must equal the original radius ro, so C' = 7o, and r = kt + ro. To find
k we use the fact that when t = 3,7 =3k +rpand V =3V = x@Bk+r0)® =% 4mrf =

Bk +m0)® = ir = 3k+ro=%ro = k=%rg(—1--—1>.5incer=kt+ro,

¥z
r= %ro <—£ — 1>t + ro. When the snowball has melted completely we have r =0 =
3V2 : 3v2 3
Ly (— — 1)t+r = 0 which gives t = ———. Hence, it takes —-3= ~ 11h 33 min
s\ 2 ° & 21 V2-1 V21

longer.



