5 [ INTEGRALS

5.1 Areas and Distances

1. (a) Since f is increasing, we can obtain a lower estimate by using

left endpoints. We are instructed to use five rectangles, son = 5.

Ls = if(l’z_l)ACC [Aa?:b;na = 10;0 = 2]
= f(zo) - 2+ f(21) - 2+ flwa) - 2+ f(=3) - 24 flma) - 2
=2[£(0) + £(2) + f(4) + £(6) + f(8)]
%2(1+3+4.3+5.4+6.3)=2(20)=40

Since f is increasing, we can obtain an upper estimate by using

right endpoints.

R5 = i:l f(.’l?z) Ax

=2[f(z1) + f(z2) + f(z3) + f(za) + f(25)]
=2[f(2) + f(4) + f(6) + f(8) + f(10)]
~2(3+43+5.446.3+7) =2(26) = 52

Comparing 5 to Ls, we see that we have added the area of the rightmost upper rectangle, f (10) - 2, to the sum
and subtracted the area of the leftmost lower rectangle, £(0) - 2, from the sum.

(b) L1o = Z%E flzic) Az [Az = 1920 — 13
i=1

10-0
=1[f(zo) + f(z1) + --- + f(zo)]
=fO)+fL)+---+f(9)
~14+214+3+37+43+49+544+58+6.3+6.7
= 43.2

Rio — if(:m) Az = f(1)+ f(2)+ - + £(10)

add rightmost upper rectangle,
= 1. £(10) =1 -
abril & S =2 i) subtract leftmost lower rectangle

=432+7—-1=492

2
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4
i=1

=f(@1) -1+ fz2) - 1+ f(zs) 1+ flaa) - 1
=f(2) + f(3) + f(4) + f(5)
=3+3+i+i=75=1283
Since f is decreasing on [1, 5], an underestimate is obtained by using the

right endpoint approximation, R4.

(b) Ly = i:lf(mi_l)Am

=fO+F2)+FB3)+ f(4)

=1+3+5+35=2% =208
Ly is an overestimate. Alternatively, we could just add the area of the
leftmost upper rectangle and subtract the area of the rightmost lower
rectangle; that is, Ly = Rs + f(1) -1 — f(5) - L.

5. (a) f(:c)=1+w2andA:v=—2—_§—_1—)=1 =

Ri=1-f0)+1-f(1)+1-f(2)=1-14+1-2+41-5=8.
_2-(=1
6
Re = 0.5[f(—0.5) + f(0) + £(0.5) + f(1) + f(1.5) + f(2)]
=0.5(1.25+ 1 +1.25 + 2 + 3.25 + 5)
= 0.5(13.75) = 6.875

Az =05 =

® Ls=1-f(=1)+1-f0)+1-f(1)=1-241-141-2=5
Le = 0.5[f(~1) + f(=0.5) + f(0) + £(0.5) + f(1) + f(1.5)]
=0.5(2+ 1.25 + 1+ 1.25 + 2 + 3.25)
= 0.5(10.75) = 5.375

(©) M =1- f(—0.5)+1- f(0.5) +1- £(L5)
=1-1.25+1-1.25+1-3.25=5.75
Mg = 0.5[f(—0.75) + f(—0.25) + £(0.25)
+ £(0.75) + £(1.25) + £(1.75)]
= 0.5(1.5625 + 1.0625 + 1.0625 + 1.3625 + 2.5625 + 4.0625)
= 0.5(11.875) = 5.9375

(d) Ms appears to be the best estimate.
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1. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:

1 Let SUM = 0, X_MIN = 0, X_MAX = 7, N = 10 (or 30 or 50, depending on which sum we are calculating),
DELTA_X = (X_MAX — X_MIN)/N, and RIGHT_ENDPOINT = X_MIN + DELTA_X.
2 Repeat steps 2a, 2b in sequence until RIGHT_ENDPOINT > X_MAX.
2a Add sin (RIGHT_ENDPOINT) to SUM.
2b Add DELTA_X to RIGHT_ENDPOINT.
At the end of this procedure, (DELTA_X) - (SUM) is equal to the answer we are looking for. We find that
Rio = 7o \1;01 sin(%) ~ 19835, Rso == = i sin(%) ~ 1.9982, and Rso = g% 5201 sin(%) ~ 1.9993.
It appears that the exact area is 2.
Shown below is program SUMRIGHT and its output from a TI-83 Plus calculator. To generalize the program, we

have input (rather than assigned) values for Xmin, Xmax, and N. Also, the function, sin z, is assigned to Y,

enabling us to evaluate any right sum merely by changing Y; and running the program.

PROGREAM: SUMR IEHT PraImSUMREIGHT
FES ) ArMin=7a

tPromet Bmin Bmax="7n

Promrt Emax H=71A

tPromrt M 1.983523537
P LEmax—#Eming N0 Done
Hmin+0+kR

itForCI.1.H2

IS+ R3S
tR+0O+F
tEnd
OS2
ilise ~

9. In Maple, we have to perform a number of steps before getting a numerical answer. After

loading the student package [command: with (student) ;] we use the command
left_sum:=leftsum(x*(1/2),x=1..4,10 [or 30, 0or 50]) ; which gives us the expression in summation
notation. To get a numerical approximation to the sum, we use evalf (lef t_sum) ;. Mathematica does not have
a special command for these sums, so we must type them in manually. For example, the first left sum is given by
(3/10) *Sum[Sqrt [1+3 (1-1) /10],{i,1,10}], and we use the N command on the resulting output to get
a numerical approximation.

In Derive, we use the LEFT RIEMANN command to get the left sums, but must define the right sums ourselves.

(We can define a new function using LEFT RIEMANN with k ranging from 1 to n instead of from 0 to 7 — 1)

(a) With f(z) = /z, 1 < z < 4, the left sums are of the form L,, = g o4/1+ izn-_—l) Specifically,
T =1

Ji+ 2
i=1 n

Lyo & 4.5148, L3o ~ 4.6165, and Lso ~ 4.6366. The right sums are of the form R,, =

S

Specifically, Ry = 4.8148, R3¢ = 4.7165, and Rso ~ 4.6966.
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1.

13.

15.

(b) In Maple, we use the leftbox and rightbox commands (with the same arguments as leftsumand
rightsum above) to generate the graphs.

2.1 21 2.1
1 1 4 1 4
0 4 0 0
left endpoints, n = 10 left endpoints, n = 30 left endpoints, 7 = 50
2.1 2.1 2.1
|
|
1 1 ! 4 1 4
0 4 0 0
right endpoints, n = 10 right endpoints, n = 30 right endpoints, 1 = 50

{¢) We know that since /7 is an increasing function on (1, 4), all of the left sums are smaller than the actual area,
and all of the right sums are larger than the actual area. Since the left sum with n = 50 is about 4.637 > 4.6
and the right sum with n = 50 is about 4.697 < 4.7, we conclude that 4.6 < Lo < exact area < Ryo < 4.7,
so the exact area is between 4.6 and 4.7.

Since v is an increasing function, Lg will give us a lower estimate and Rs will give us an upper estimate.

Ls = (01t/5)(0.5 s) + (6.2)(0.5) + (10.8)(0.5) -+ (14.9)(0.5) + (18.1)(0.5) + (19.4)(0.5)
= 0.5(69.4) = 34.7 ft

Re = 0.5(6.2 + 10.8 + 14.9 + 18.1 + 19.4 -+ 20.2) = 0.5(89.6) = 44.8 ft

Lower estimate for oil leakage: Rs = (7.6 +6.84- 6.2+ 5.7+ 5.3)(2) = (31.6)(2) = 63.2 L.

Upper estimate for oil leakage: Ls = (8.7 + 7.6 -+ 6.8 + 6.2 4 5.7)(2) = (35)(2) = 70 L.

For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an

underestimate. We will use Mpg to get an estimate. At = 1, so
Mg = 1[v(0.5) + v(1.5) + v(2.5) + v(3.5) + v(4.5) + v(5.5)]
~55+40+28 +18-+10+4 =155 ft

For a very rough check on the above calculation, we can draw a line from (0, 70) to (6, 0) and calculate the area of

the triangle: %(7 0)(6) = 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.
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1. fz) = Vo, 1<z <16. Az=(16-1)/n=15/nandz; =1+iAz =1+ 15i/n.

A= hm R, = lim Zf(xz)AfL’— hm Z 4 1_,[_151 15

19. f(z) =zcosz, 0<z < 3. Az =(3-0)/n=7%/nandz; =0+ iAz = Zi/n.

A= Jim R, = lim Zf(mz)Am—— lim Z Z—Trcos(%) e

n—00 ; =00 ; 2 ¥

k22

21. lim Z " tan - canbe interpreted as the area of the region lying under the graph of y = tan = on the interval
n—o 4 4n in

7/4-0 :L,mizﬂ—i—iA:c:E,andz;‘:mi,the

[0, §], since for y = tanx on [0, T] with Az = — i =

expression for the area is A = hm (i) Az = hm tan X Note that this answer is not unique,
P 4n in B
’L 1

since the expression for the area is the same for the function y = tan(z — kx) on the interval [lm, km + %] , where
k is any integer.

2-0 2 27
B.(@y=f(z)=2" Az = - - andz; =0+ iAzx -

2\° 2 n~32° 2 64,
A_nILH;ORnZ hm Zf(.’cz)Aw = hm 1;(;) E:nll—»ngozlﬁ’—ﬁ:nlgrolomz;l
*(n+1)%(2n® +2n — 1)
12

by 3245 s P
()i;1

© lm 6_4 n*(n + 1)*(2n? +2n - 1) _ 64 - (n2+2n+1)(2n2+2n—1)

n—oco nb 12 12 n—oo n? . n2

16 .. 2 1 1 16 32

b—0 b . bi
2. y= f(xr) =cosz. Am-T—Eandmi—O—l—zAac— n
n b b bSln<b<2—T;+1>> b
. i CAS | cas .
A= lim R, —JLH;OZJ" zl)Aw:nll—»I@o;COS(ﬁ) -~ lim 2nsm(i) = o~ | = sinb
2n

Ifb:%,thenA:sinzz'—zl.
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5.2 The Definite Integral

4
1. Ry = Y, f(z:) Az [x] = x; is aright endpoint and Az = 0.5]
i=1

=05[£(0.5) + £(1) + f(L5) + f(2)]  [f(z) =2 - %]
=0.5[1.75 + 1 + (—0.25) + (—2)]
= 0.5(0.5) = 0.25
The Riemann sum represents the sum of the areas of the two rectangles
above the z-axis minus the sum of the areas of the two rectangles below

the z-axis; that is, the net area of the rectangles with respect to the z-axis.
5
3. Ms =3 f(@) Az [of =T = 5(wi—1 + ;) is a midpoint and Az = 1]
i=1

=1[f(L5) + £(2.5) + f(3.5)
+ f(45)+ £(55)] [f(z) =z —2]
~ —0.856759

The Riemann sum represents the sum of the areas of the two rectangles

above the z-axis minus the sum of the areas of the three rectangles below

the x-axis.
5. Ar=(b—a)/n=(8—-0)/4=8/4=2.

(a) Using the right endpoints to approximate [» f(z) dz, we have

iﬁjlf(a:i) Az = 2(f(2) + F(4) + F(6) + F(8)] ~ 2L+ 2+ (—2) + 1] = 4,
(b) Using the left endpoints to approximate [, f(:c) dz, we have

élf(mi_l) Az = 2[f(0) + £(2) + f@) + F(6)] M 22+ 1 +2+ (~2)] = 6.
(¢) Using the midpoint of each subinterval to approximate [* (z) da, we have

élf(m) Az =27 (1) + F(3) + F(5) + F(T)] =23+ 2+ 1+ (—1)] = 10.

7. Since f is increasing, Ls < 025 f(z)dz < Rs.

Lower estimate = Ls = éf(.m_l) Az = 5[f(0) + f(5) + F(10) + f(15) + f(20)]

=5(—42 — 37 — 25— 6 + 15) = 5(—95) = —475

Upper estimate = Ry = i:l flz:) Az = 5[f(5) + F(10) + f(15) + f(20) + f(25)]

=5(—-37—25—6+ 15+ 36) = 5(—17) = -85
9. Az = (10 — 2)/4 = 2, so the endpoints are 2, 4, 6, 8, and 10, and the midpoints are 3, 5, 7, and 9. The Midpoint

4
Rule gives [, V2% + 1dz~ 3 f(@:) Az =2(V3B + 1+ VB + 14+ V7 + 1+ V9 +1) = 124.1644.
=1
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1. Az = (1 —0)/5 = 0.2, so the endpoints are 0, 0.2, 0.4, 0.6, 0.8, and 1, and the midpoints are 0.1, 0.3, 0.5, 0.7,

and 0.9. The Midpoint Rule gives

[ sin(z?) da ~ Zl f(@:) Az = 0.2[sin(0.1)? 4 sin(0.3)? + sin(0.5)2 4 sin(0.7) -+ sin(0.9)%] & 0.3084.

13. In Maple, we use the command with (student); to load the sum and box commands, then
m:=middlesum(sin(x”2),x=0..1,5); which gives us the sum in summation notation, then
M:=evalf (m}; which gives M5 = 0.30843908, confirming the result of Exercise 11. The command
middlebox (sin(x"2),x=0..1,5) generates the graph. Repeating for n = 10 and n = 20 gives
Mio =~ 0.30981629 and Mao =~ 0.310155563.

1 1 1

A L] el

0 0 0

15. We’ll create the table of values to approximate J; 0” sin z dz by using the

n R,
program in the solution to Exercise 5.1.7 with Y; = sin z, Xmin = 0,
5 | 1.933766
Xmax = 7, and n = 5, 10, 50, and 100. 10 | Lossma
5 .
The values of R,, appear to be approaching 2. 0 | 1.999342
100 | 1.999836

17. On [0, 7], lim Z zisinz; Az = [ zsinzdz.

n—>oo =1

19. On [1, 8], lim Z V2§ + (@02 Az = [ 2z + 72 da.

'ﬂ/‘POO

5__(—_1.2:§andxi__1+lAw‘__ _6_
n n n

/j(l—l—Bw)dac: lim Zf(mq)/_\:c-— lim i[ ( %)}g

21. Note that Az =

= 182 ~ 18i
= lim — b - 1ot
Jm 23 -2y D= 85+ 3 2
4=1 i=1 =1
. —2n+1§2i = lim { ~2n+ b "(”Jrl)}
n—oo N n i—1 n—oe 1 2
= lim [~12+1—02§ n(n—ﬁ—l)} lim [ L2 }

I

2
. . 1
lim {—,!.2—{—54(1 + E)} =-12454-1=42

n—oQ

227
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23. NotethatAx:?;(—) =2andxz—0+zAm—-——

—.
? 2 do — lim S Ao = lim 3 432\ [ 2
/0(2—90) x ner;o;f(mz) m—nin;og:; 2——n—2

n

L2 4 .2 4 2
nh_)n;oﬁ{;2—$;z}r= hm—(2n——n—2 )

Il

n—oe N

= lim [4—;—3.m+_1%(2—”.ﬂ} — im (4_é.ﬁ+_1.2”+1>

n
lim [4—f"-(1+1>(2+1)} 4-%.1.2=3%
n—-s00 3 n n

25. Note that Az = k——l

erb-

—andz; =1+:1Az =
n

2 n
/ 2% de = lim Z f(z:) Az = lim
1 n—oo Py [

SR

1+4(1/n) =1 +i/n.

et =1 i
:JLH;O%Z n +3n*i + 3ni +i3) =nli_>n;°;%{Zn3+z3n2i+23ni2+2i3}
i=1 =1 =1 i=1 i=
1 n
= = ‘»
T}ergon n-n®+3n Zz+3n

2
i=1 4=

1 =1
lim [1+—?’2—-———"("+1) 3
n

n—3 00

L2 n(n+1)(2n + 1) Ey n*(n+1)°
2 n3 6 n4 4
2
— lim 1+§'n+1+1.n+1'2n+1+1.(n+1)
n—oco 2 n 2 n n 4 n?
3 1\ |1 1 1\ 1 1\* 3,1 1
= li S e = Ve (1+2) [=1+2+2 242 =3
Tim. 1+2(+n)+2<1+n>(2+n)+4(+n> 1434 5-2+7=375
b 2
b—a b—a, . alb—a) & (b—a)* a) n
. = T =1 1+
27/amdw nh_’n;o - 1_21[ - z} nl_r&)[ - E 3 i;lz
2 2
~ - - 1
= lim [“(b Y4 O 2‘1) .7"‘(7”‘#1)]:a(b_a)jL lim_ (b—a) <1+—>
n— 00 n T 2 n— 2 n
=ab—a)+i(b-a)?=(b—a)(a-+rib—3a)=(b-a);(b+a)= 1(¥* - a?)
z 6—2 41
29, f(w)zﬁ a=2,b:6,andAa:——————— Using Equation 3, we get =] —-$1—2+2Am—2+—
6 n _).}_ilnf 4
so/‘z Ti 5 ——dr= hm Rn_nh—{%oz—_—_——— .

=1 <2+4z>
3. Az = (n — 0)/n = n/nand 2} = x;i = mi/n

5%¢

. ) L T . -
[ - () o)

>7r cAS 1 (571') cAS ( 2 )
sin— }|— = =« lim — cot = | —
nJ/n n—oo N 2n

2
5 5
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35.

31.

39.

a.

=

45,
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(a) Think of f02 f(z) dz as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is
A=1(b+B)hso [} f(z)dz =11 +3)2=4

®) fg’ (z)dz = fo x)de + [ f(z)dz + [2 f(z)da
trapezoid rectangle triangle
=2(1+3)2+ 31 + 3-2:3 =4+4+3+43=10

(c) f5 x) dz is the negative of the area of the triangle with base 2 and height 3. f5 (z)dz = —% -2-3=-3.

@ f79 f(z) d is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals
—3(B +b)h = —1(3+2)2 = —5. Thus,
fS f@)ydz = [ f(z)de + [ fz)d + 7 f(2)dz =10+ (—3) + (=5) = 2.

fo ( T — 1) dx can be interpreted as the area of the triangle above the x-axis 1

il (3.3)

minus the area of the triangle below the x-axis; that is, . /l

;WG -3@M=3-1

L

0 i éx

I

PN

I 33 (1 + /9 — 22 dz can be interpreted as the area under the graph of .
f(z) =1+ +v9 — 22 between z = —3 and = = 0. This is equal to one-quarter
the area of the circle with radius 3, plus the area of the rectangle, so : +2

=31
L1 +V9=22)dz=1n-32+1-3=3+ I 6

—'2 0] x

f 31 |z| dz can be interpreted as the sum of the areas of the two shaded
2,2
triangles; thatis, 2(1)(1) + 3(2)(2) =3 + 4 =32 LD

-1 o

f; Vidt = — f 49 Vidt [because we reversed the limits of integration]
=— 49 vz dz [we can use any letter without changing the value of the integral]

38
3

[}(5—62*)dx = [y 5dz~6 [y a®dz=5(1~0)—6(3)=5-2=3
f13em+2d:v=f13ez -eQdmzezflse‘”dw=e2(e3—e) =5 —¢f

f f(z)dx + f2 flx)dz — f_ (z)dx = f flz)ydz + f f(z)dz [by Property 5 and reversing limits]
= f#1 f(x)dz [Property 5]

L [12f(z) + 3g(2)] dx = 2 [} f(x) dz + 3 f§ g(z) dz = 2(37) + 3(16) = 122
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51. 0 <sinz < lon [O, ﬂ ,sosin®z < sin®?z on [0, 3]. Hence, foﬁ/4 sin® zdz < f0“/4 sin2 mdm (Property n.

BLIf-1<z<1,then0<2’<landl <1+2°<2s01<+/1L22<+2and . £
11— (- <f \/1+x2dm<\/—1—( 1)] [Property 8]; thatis, 2 < [ VitaZdr <23

< Pldz<12-Dord < [fPldz<i,

s01(% — )< f"/3tanxdz < \/_(g ~Z)or

59. The only critical number of f(z) = ze™* on [0,2] is z = 1. Since f(0) =0, f(1) = e~ ~ 0.368, and
£(2) = 2e7% ~ 0.271, we know that the absolute minimum value of f on [0, 2] is 0, and the absolute maximum
ise'. By Property 8,0 < ze™® < e lfor0<a <2 = 0(2-0)< f02 zedr <e 1(2-0) =

0< f ze Tdzr < 2/e.
61. V2t 41> vzt = 22 sofl Vi + dm>f *de=3(3%-1%) =%,
63. Using a regular partition and right endpoints as in the proof of Property 2, we calculate

f;cf(a:) dz = lim Xn: cf(z;) Az, = lim c i f(z:) Az; = ¢ lim i flzs) Az = cf: f(=z) dz
65. Since — | f(z)| < f(x) < |f(=)|, it follows from Property 7 that

~[21f(@)de < [P fz)de < [P f(@)|dz =

| < [1f@)de

Note that the definite integral is a real number, and so the following property applies: —a <b<a = |b|<a
for all real numbers b and nonnegative numbers ¢.

n o\ 4 1
67. lim Z— = - (%) :/ ztdr
Nn— 0O TLHOO Z l O

69. Choose z; = 1 + % and ] = /Ti—1Z; = \/(

1) <1+3>. Then
n

n

2 1 1
- _ . o
R N

= lim n

in—oco. Z (n+z—1)('n, {-Z)

Il

~ 1 1
R he hint
T}LIEO"iZI(nH—l n+i) [by the hint]

C /n—1 n
1
:l. -
nljg,ﬂ(Z Z,lH)
i=0 1
= i IR SERFIUSE S B B IS S
T n+1 an—1 n+1 on—1 " 2n
1

. 1 :
:JL‘EO"(; B %) = Jim, (1-3) =3

ERES
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29.

31
33

35.

31

39.

4.

45,

47,

2 2 —312
3 it = g gt | 23 |1
[ s [ D) -2 ]2

21.

. From the graph, it appears that the area is about 60. The actual area is

[1  CHAPTERS INTEGRALS

P+ 3)dr = [32® +32]] = (2.8 +3-8) — (2-2 +3-2) = 152 ~ 14 = 138

1

1 a5 5. 9/5]7 _ 5 a_ 5
N dw—[gw/} =2_0==%

0
-
1 7
=—1({z-1)=2
|, -1(5-1) -3

5 .

2 ] ) 2 o e : ;

/ — dz does not exist because the function fz) = P has an infinite discontinuity at x = 0; that is, f is
-5 L

discontinuous on the interval [—5, 5].
fo2m(2~|—x5)da: = f02(2m+x6) da = [mz + %1’7}3 =(4+%8) - (0+0) =18
f(;r/4sec2tdt EE {tamt]g/4 =tanZ —tan0=1-0=1

f:" csc? 6 df does not exist because the function f(8) = csc? 8 has infinite discontinuities at @ = 7 and 8 = 2m;

that is, f is discontinuous on the interval [, 27].

PP gld:c—l[ln|a:|]9~l(lnfb—lnl)—11n9—0—1n91/2—1n3
22 0 2f, 2z 2 1 2 T2 a a

i 6 s/ 1 FLo—1,1V3/2 . —1(/3 so—171
/1/2 \/1—_t2dt:6/1/2 — dt = 6sin t]1/2 :6[s1n (——2—)—sm (5)]

~o(3 - §) = 0(8) =7
f_ll e“ttdu = [e*T] 1_1 =e2 —e®=¢2—1 [orstart with e*t! = e%e!]

J2 F@)dn = [ atdo+ [Pa®da = [2a%] + (32} = (3~ 0) + (% — ) = 107

2
7_3

— 1

27 ,.1/3
i z/3dz = [—i—m‘”?’]o

-81 — 0 = 283 = 60.75. This is $ of the

area of the viewing rectangle.

It appears that the area under the graph is about % of the area of the
viewing rectangle, or about %ﬂ' =z 2.1. The actual area is

Jy sinzdr = [—cosz]y = (—cosm) ~ (—cos) =~ (=1) +1=2.
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3z .2 0,2 3z 2 2w | 2 3z , 2
u -1 u®—1 ue —1 u'—1 u'—1
4. =/ LT —du= d du = — d 2y =
9(z) /230 u2+1 v /uuz 1 u+/0 w1 ™ /0 u? +1 u+/0 U2+1du

+
oy (22) - ()_1i o -1 9?1
9@ =—3 )+1 d( D el w0 =2 1 T s
51.y—f\/— tsintdt = L/— tsmtdt—i—f1 Visintdt = \/Esmtdt-%—fl Visintdt =

=¥z (sin/z) - —LE (vVx) + %% sin(2®) - dix (=°) = —@—\;‘E\/E + 2%/ sin(2%) (32?)

= 3g7/? sin(w?‘) — %

=

o= e

Y du [since 7@

53, F(z) — /f(t Vit = F'(a) :/f@du]

F'(x) = f'(z) = —1:2(—‘"”2)f d‘i (@) = YL 2 op = 2V Lt 2 So F(2) = VITOE = /35T,

85. By FTC2, [ f/(z)dz = f(4) — f(1),50 17 = f(4) — 12 = f(4) =17 +12 = 29.

57. (a) The Fresnel function S(z) = [ sin(£¢*) dt has local maximum values where 0 = §'(z) = sin(Zz*) and S’
changes from positive to negative. For > 0, this happens when %xQ = (2n — 1)7 [odd multiples of 7] <>
2 = 22n—1) & =z =+/4n - 2, n any positive integer. For z < 0, S’ changes from positive to negative
where = ac = 2nw [even multiplesof 7] & P =4n < g=-2 v/n. S’ does not change sign at
z=0.
(b) S is concave upward on those intervals where S () > 0. Differentiating our expression for S’ (x), we get
8"(z) = cos(52)(25 %) = mxcos(27). Forz > 0, §”(z) > 0 where cos(Z22) >0 < 0< I ze' < I
(2n— —)7r< 2% < (2n—|—%)7r,nany1nteger &S <z« lor\/4n——<w< \/477,——|—1,nany
positive integer. For z < 0, 8”(z) > 0 where cos(52%) < 0 & (2n—2)m < Z2% < (2n — 1)z, nany
integer & 4dn-—-3<z’<4dn-1 & VAn-3<|z|<VIn—1 = JIn—-3<-z<+dn-1
= —V4n —3 >z > —+/dn — 1, 5o the intervals of upward concavity for z < 0 are
(—v4n —1,—+/4n'=3), n any positive integer. To summarize: S is concave upward on the intervals (0, 1),

(=v3,-1), (V3,v5), (-V7,-V5), (VT,3), ...

(c) In Maple, we use plot ({int (sin(Pi*t*2/2),t=0..x),0.2},x=0..2) ;. Note that Maple
recognizes the Fresnel function, calling it FresnelS (x). In Mathematica, we use
Plot [{Integrate[Sin[Pi*t*2/21,{t,0,x}]1,0.2},{x,0,2}]. In Derive, we load the utility file
FRESNEL and plot FRESNEL_SIN (x). From the graphs, we see that [° sin(Z¢?) dt = 0.2 at z & 0.74.

0.75 0.25

Wal

0.1
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59.

61.

63.

65.

67.

(a) ByFTCl, ¢'(z) = f(2). So ¢'(z) = f(z) = 0atz = 1,3,5,7, and 9. g has local maxima at z = 1 and 5
(since f = g’ changes from positive to negative there) and local minima at z = 3 and 7. There is no local
maximum or minimum at z = 9, since f is not defined for z > 9.

(b) We can see from the graph that ’fol fdt{ < ‘ff fdt‘ < lf;’ fdt’ < ‘f;fdt} < {fffdtl.
S0 g(1) = | fy £at], 9(3) = J7 £ dt = g(1) - [ff"fdt) + ‘fffdt\, and

g(9) = [° fdt = g(5) — l J7 fdt‘ + ‘ 2 faft{. Thus, g(1) < g(5) < g(9), and so the absolute maximum of

g(z) occurs at z = 9.

(¢) g is concave downward on those intervals where ¢g” < 0. But (d) .
g (@) = f(z),so g"(z) = f'(x), which is negative on 14
S | WAR
(approximately) (1,2), (4, 6) and (8,9). So g is concave downward p ' .
on these intervals. —17 \/ \/
'2 +4

n 43 1-0 < (i\° ', 1t 1
I ~ = lim ~—— -] = =|7| =3
nl—{lgolgl nt - ol no = <n) /0 e [4}0 4

Suppose h < 0. Since f is continuous on [ + h, z], the Extreme Value Theorem says that there are numbers 4 and
vin [z + h, z] such that f(u) = m and f(v) = M, where m and M are the absolute minimum and maximum
values of f on [z + h, z]. By Property 8 of integrals, m(—h) < f:’+h f#)dt < M(—h); that is,

fw)(=h) < — fz”h F(t)dt < f(v)(—h). Since —h > 0, we can divide this inequality by —h:

z+ h) —g(z) _1

z+h z+h
flu) < % / f{#®)dt < f(v). By Equation 2. 9( h =z / F(t)dt for h # 0, and hence

flw) < g(:c;hf)b—_g(x_) < f(v), which is Equation 3 in the case where h < 0.

(@ Let f(z) =vz = f()=1/(2y/&)>0forz >0 = fisincreasing on (0,0). If z > 0, then
2% > 0,501 + 2% > 1 and since f is increasing, this means that fl+2*)y > f1) = VI+a23>1for
x> 0. Nextletg(t)=t>—t = g¢'(t)=2t—1 = g'(t)>0whent > 1. Thus, g is increasing on
(1,00). And since g(1) = 0, g(t) > 0 whent > 1. Now let t = /1 + 23, where > 0. /1 & 25 > 1 (from
above) = t>1 = g(t)>0 = (1+ m3) — /14 2% > 0forz > 0. Therefore,
1<V1+23<1+z%forz>0.

(b) From part (a) and Property 7: fol ldr < fol 1+ x3de < fol (1+2%)ds &

[2lo < Jo VIt addz < [w+1a%], & 1< [}vVIFadde <1+4=125

Using FTC1, we differentiate both sides of 6 - w dt = 2/ to get M =2 1 = f(z)= 32,
. B x?2 2z

To find a, we substitute = = q in the original equation to obtain 6 4 / f—gl dt=2Va = 64+0=2/a =
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69. (a) Let F(¥) = fg f(s)ds. Then, by FTC1, F’(t) = f(t) = rate of depreciation, so F'(t) represents the loss in
value over the intervat {0, £].

b Ct) = [A + / f(s)ds } At F( ) represents the average expenditure per unit of ¢ during the interval

[0, t], assuming that there has been omly one overhaul during that time period. The company wants to minimize
average expenditure.

© C(t) = —1— [A—i—/ot f(s) ds] . Using FTC1, we have C'(¢t) = ——tlz [A—I— /Otf(s) ds] + %f(t).

o't)=0 = tf(t):A—i—/Otj'(s)ds = f(t):%[A+/Otf(s)ds]=C(t).

5.4 Indefinite Integrals and the Net Change Theorem

d 7T 2 1/2 1.2 —1/2 _ T
o (Va2 +1+C] = [(a; +1) +C}—2(:c +1) %% = ——
3 d T Lol = 1 VaZ =22 —x(— z)/vVa2 —a? i(a2—m2)+m2 _ 1
T dz | a?Va? — 22 B a® — z? S a (a2-22)F (a2 — z2)®
g—3/4+1 1/4
—3/4 5 __ _Z _ 4pl/4
5/ dr = _3/4+1+C' 1/4+C' 427"+ C
3 .174 $2 1 4 2
7./(z +6(B+1)dm=Z+6—2—+m+C=Zx +3z"+z+C
2 2 .3 2 2, 1,3 1,4
9. [A-t)(2+t")dt=[(2-2+t —t)dt=2—20+5 -7 +CO=2—" 451"~ 4" +C
2 -’.53/2 IEZ 32 1 2
11./(2—\/5) dmz/(4—4\/5+m)dm=4x—4§ﬁ+ 5 +C =4x — / +—2—m +C
13. B = ST gy = ! B2 gz = | secx tanzdr = secz + C
1—sin’z m cos? COST COST

15. [2y/zde = [2*/?de = 22°? + C.
The members of the family in the figure correspond to C' = 5, 3, 0, —2, and —4.

12 530//

=4

17. [2(62% — 4z +5)de = [6- L2® — 4. 22?4 5] = [22° — 22% + 5z = (16 — 8 +10) — 0 =18
0 3 2 0 0

19 0,20 —e*)dz=[2? — ]2, = (0-1) = (1-e7) = —2+1/e

—6
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23,
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29.

3.

33.

35.

37

39.

a.

43.

45,

47,
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f_22(3u+1)2du=f32 (9 +6u +1) du = 9-3u®+6- %uz—l-u]: = [3u3+3u2+u]2_
=(244+12+2) — (—24+12~ 2) = 38 — (—14) = 52

4
JEVRQ+ = [0 00 = (307 1 207] = (84 %) - (34 2) =B+ 2 - 8

2

s 2 1,4 I . 177 1 63
. 4y +;§ dy = |41y +2-—y =ly'-5] =01-1D)-(16-1)=-&

~2 y2 -9
1

folm(%+ V) d$=f01(gc4/3+9c5/4)dw: [;xwa_{_%wg/ﬂo —(F+d) 0=

f14 /5/.’1,'d$:\/gf14x_1/2d$:\/5[2\/5]‘;:: \/5(2.2_2,1):2,\/5

Jo (4sinf —3cosf)df = [~4cosd — 3sin 6]y = (4—0) — (—4 —0) =8

/%1 + cos? 9 a/d 1 cos? 0 R e
——df = ——t — | df = 1
/0 cos? 6 : /0 <cos2 0 + cos? 0) b /0 (F2 el

= [tan0+ 67" = (tanZ + Z) — (04 0) =1+

64 64 1/3 64 64
14+ ¥z 1 x —1/2 | _(1/3)—(1/2) 172, —1/6
/ w= [ (m*m)d””:/l = o= [T 4 e

1

64
~ [2m1/2+—ga:5/6]1 = (16+22) — (24 &) =144 186 _ 256
e .2 e
[ (o o s
1 1
= (3¢ +e+lne) — (£ +1+1n1) =i’ +e-1

2 (@ —2|z)) dz = Iz — 2(—a)) da + J2le - 2(z)] de = [° 3w dz + [ (~z)dz = 3[%x2]‘11 -
=30-3)~-@2-0)=-1=-35

D=
8
(M)
[
N

The graph shows that y = = + z® — x* has z-intercepts at z = 0 and at 1.2

z = a ~ 1.32. So the area of the region that lies under the curve and

above the z-axis is

i@ +a? o) do = [30* + o — 2o%]] ]
= (%az + %a‘q’ - %as) -0 —02 ] 15
~ 0.84 -0.2

2
A= [y dy= [ ~3')s=(4-4) —0= 1
If w'(t) is the rate of change of weight in pounds per year, then w(t) represents the weight in pounds of the child at

age t. We know from the Net Change Theorem that |, 510 w'(t) dt = w(10) ~ w(5), so the integral represents the
increase in the child’s weight (in pounds) between the ages of 5 and 10.

Since r(¢) is the rate at which oil leaks, we can write r(t) = —V’(t), where V (¢) is the volume of oil at time £.
[Note that the minus sign is needed because V' is decreasing, so V' (t) is negative, but r(¢) is positive.] Thus, by the
Net Change Theorem, [)*° r(t) dt = — [ V'(t) dt = — [V (120) — V(0)] = V/(0) — V(120), which is the

number of gallons of oil that leaked from the tank in the first two hours (120 minutes).
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By the Net Change Theorem, |, 15000%0 R'(z) dz = R(5000) — R(1000), so it represents the increase in revenue when
production is increased from 1000 units to 5000 units.

In general, the unit of measurement for [ ; f(z) dz is the product of the unit for f(z) and the unit for z. Since

f(z) is measured in newtons and x is measured in meters, the units for [ 0100 f(z) dz are newton-meters.
(A newton-meter is abbreviated N-m and is called a joule.)

(a) displacement = f03(3t ~5)ydt = [3¢* — 5t}2 =2 _15=-2%m

(b) distance traveled = [ |3t — 5 dt = [5/°(5 — 8t) dt + [, (3t — 5) dt

T P S N S VIR S P
@V(t)=alt)=t+4 = vt)=3t"+4+C = v(O):C:5 = o(t)=3t2+4t+5m/s
(b) distance traveled = 010 lv(t)| dt = folo |36 + 4t + 5| dt = (% +4t+5)dt

= [56% 262 + 5] ) = 22 4200 + 50 = 416-5;

Sincem’(m):p(z),m:f04 m)dm~f0 9+2vz)dz = [9m+4m3/2} =36+ %2 —0=2120 =462 kg.

Let s be the position of the car. We know from Equation 2 that s(100) — s(0) = 100 v(t) dt. We use the Midpoint

Rule for 0 < ¢ < 100 with n = 5. Note that the length of each of the five time mtervals is

20 seconds = % hour = %~ hour. So the distance traveled is

180

100
J3 v(t) dt = 1

g [0(10) + v(30) + v(50) + v(70) -+ v(90)]

L (38 + 58 4 51 + 53 -+ 47)

o
5 & gl

N »-*I
Wi W=
&l |

= 1.4 miles

From the Net Change Theorem, the increase in cost if the production level is raised from 2000 yards to 4000 yards

is C(4000) — C(2000) = [y C' () dz.

4000 4000
/ C'(z)dz = / (3 — 0.01z -+ 0.000006z%) dz
2000 2000

4000

2000 = 00,000 — 2,000 = $58,000

= [3z — 0.0052° + 0.0000022°]

(a) We can find the area between the Lorenz curve and the line y = z by subtracting the area under y = L(z) from
the area under y = . Thus,

‘ i = — )] dx
coefficient of inequality = area between Lorenz c.urve and liney =« f 0 [z
area under liney = f T dac
T — d g — L(z)]d 1
_Jolo-L@lde _ Jy o Lz)] ””:2/ o — L(z)] do
[22 /2] 1/2 0

(b) L(z) = S22+ Sz = L(50%) = L(3) = & + 55 = 12 = 0.39583, so the bottom 50% of the
households receive at most about 40% of the income. Using the result in part (a),
coefficient of inequality = 2 [} [z — L(x)] dz = 2 fol (x— L2 — Gx)do
—2fH(Er - B dr =2} Sz —2")do

ISR CED R ORE:
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5.5 The Substitution Rule

1.

1.

13.

15.

17.

19.

2.

23.

25.

21.

Let v = 3z. Then du = 3dz, so dz = %du. Thus,
Jcos3zdr = [cosu(3du) = [cosudu = %sinu+ C = %sin3z -+ C. Don’t forget that it is often very

easy to check an indefinite integration by differentiating your answer. In this case,

d%: (3sin3z + C) = % (cos3z) - 3 = cos 3z, the desired result.

. Letw = z® + 1. Then du = 3z° dz and 2% dz = %du, SO

3/2
fmzx/x3+1dx:f\/ﬂ(%du) :%7;74—0:%-%“’/2—}—6':g(m3+1)3/2+0.

. Letw = 1 + 2. Then du = 2dz and dz = 1 du. so

2
1

4 _ g ot oot a1
/(1+2x)3da:—4/u (Qdu)—2_2 4+ = u2—i—C— (1—1—293)2_*_0'

. Letu = 2® 4 3. Then du = 2z dx, s0 [ 2x(z® + 3)*dr = [u'du= $u° + C = L(a® +3)° + C.

L Let u = 3z — 2. Then du = 3dz and dz = % du, so

J(Bz—2)Pdz = [u® (ddu) =1 Lu?* + 0 = L (32— 2)* 1 C.

Letwu = 1 + z + 2z%. Then du = (1 + 4z) dzz, so
e

1+ 4z du / —1/2 /
V1+z+ 2x2 Vu 1/2 ’

Letu = 5 — 3x. Thendu:-3dmandda::—v-%du, SO
1
/ dz :/——(»%du):—%ln|u|+C’~——ln|5 3z| + C.

5—3z U
Let v = 2y 4 1. Then du = 2dy and dy = % du, so

3 5,1 3 1 _, -3
——dy= [ 3 sdu) = - — = ;
/(2y+1)5dy /u (3 du) 5 ¢ +C 8(2y+1)4+0
Letuw = 4 —¢t. Then du = —dt and dt = —du, so
[VA—tdt= [u'?(—du) = -2u*?+ C=-2(4 —1)¥2 4 C.

Let w = wt. Then du = wdt and dt = %du, SO
[sinwtdt = [sinu (£ du) = 2(—cosu) + C = —L cosmt + C.
dx (lnz)Q 2 1.3 1 3
Letu =Inz. Thendu = —,s0 [ ~——dz= [u?du=1u’+C = i(lnz)’ +C.
z x
Let w = +/t. Then du = —d—t and idt = 2du, so
' 2VE Vi ’

/co\s/_;/z—f dt = [cosu(2du) = 2sinu -+ C = 2sin/ + C.

Let u = sin 6. Then du = cos 6 df, so [ cosf sin®§df = [u® du-——u +C = —s1n 0+ C.

Letu = 1+¢®. Then du = * dz,s0 [ e*v/1+ e dz = [udu=3u?+C=2(1+¢*)%¥? 4 C.
Or: Letu = /14 e®. Thenu’® = 1 + €° and 2udu = €* dz, so
JeeVT+erde = [u-2udu=2u®+C = 2(1+¢)%2 4+ C.
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29 Letu = 1+ 2%. Then du = 32°dz and 2 dz = % du, so

2
/V%dz:/u_l/a(%du) :%.gu2/3+02%(1+z3)2/3+0.
zZ
dlf = %Zln|u|+C=ln|lnx|+C,

N. Letw =Inz. Thendu = @, so | ——

T rzlnzx

33. Let w = cot z. Then du = — csc? 2 dx and csc® z dz = —du, so
3/2

/VCotmcsczmdm:/ﬁ(—du): —%/—2‘+C:—§(cotx)3/2+0_

35. /cotmdm = / cosi dz. Let u = sinz. Then du = cos z dz, so

Jeotzdr = [Ldu=Ilu|+C=hlsinz|+C.
37. Let u = secx. Then du = secz tan z du, so
[sec’ z tanzdz = [sec® z (secz tanz)dr = [u’du = tu®+ C =1sec®z+C.

39. Letu = b+ cx®*, Then du = (a + 1)cz®di, so
1 1 2 3/2
«. /p at1 g 1/2 d 2 3/2) C at1 i
/a: vVb+ecx 93 /u S U = @+ Do (3u + ———3c(a ) (b—i—cm ) +C

M. Let uw = 1 + z°. Then du = 2z dz, so

1+z 1 z 1 tdu 1 :

:tan_lm—l—-21-ln|1—i—:c2 +C=tan’1m+%ln(l—i—w2) + C [since 1 + z* > 0].

43. Letw = z + 2. Then du = dz, so

-2 -
/ﬁdw:/%—du:/(ﬁ“—?u 1/4)du=§u7/4—2-§u3/4+0
=4z+2)"*-E+2* +C

In Exercises 4548, let f(x) denote the integrand and F'(x) its antiderivative (with C' = 0).

3z —1
45, = —— 1.7
1@ (322 — 2z 4+ 1)* ™~
J Y
u=3x>~2c+1 = du=(6z—2)dz=2(3z—1)dz,so0 ; \{ ]
—0.75 s - e {15
3z —1 11 N1 ]
[t [ (343 v B
NS
1 3 1 -
- I T T 17
6 6 (322 — 2z + 1)°

Notice that at x = %, f changes from negative to positive, and F' has a local minimum.
035

4. f(z) =sin®z cosz. u=sinz = du=-coszdz,so

oy
fsinsxcos:vd:v:fu?’du:%u‘l—l—O:%sin‘lx—i—C’ ( ?/{\}
] Y
w

F
Note that at z = %, f changes from positive to negative and F" has a local 0 { 1\ >
5 Y,

maximum. Also, both f and F are periodic with period 7, so at z = 0 and

at x = 7, f changes from negative to positive and F has local minima. ey
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- From the graph, it appears that the area under the curve is about
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Letu =% — 1,50 du = dz. When z = 0, w = —1; when = = 2, u = 1. Thus, fOQ(:c ~1)®de = f_ll uP du =0
by Theorem 7(b), since f(u) = u?® is an odd function.

Letuw =1+ 222, so du = 622 dz. When & = 0,uw = 1;when z = 1, u = 3. Thus,

1 5 3 3
i (0 20%)° de = [ () = £[300]° = (5" 1) = (729 — 1) = 28 — 13
Letu = t/4,50 du = 2+ dt. Whent = 0, uw = 0; whent = , u = 7 /4. Thus,

Jy sec?(t/4)dt = 0”/4 sec® u (4 du) = 4[tanu]g/4 =4(tanZ — tan0) = 4(1 — 0) = 4.

J l/r(/se tan® 6 df = 0 by Theorem 7(b), since f(8) = tan® @ is an odd function.

Letu = 1/2,s0du = —1/z*dz. Whenz =1, = 1; whenz = 2, u = 1. Thus,

2 1/x 1/2
/ do = / ¢ (—du) = — 2 = —(e/ ~e) = e — V&,
1 1

2

Letu = cosf,s0du = —sinfdf. When 0 = 0, u = 1; when 6 = 3u= % Thus,
/3 /2 _ 1 1

/ sinb g :/ i =/ u? du = [—1} =—1-(-2)=1.

o cos?f 1 U 1/2 Ul q/0

Letu =1+ 2z,s0 du = 2dx. Whenz = 0, u = 1; when = = 13, u = 27. Thus,
13 da 27 2/s a2

/ ————:/ u- (%du):[-;—-&w/] =3(8-1)=3.

0 3/(1_!_21:)2 1 1

Letu:m—l,sou—!—l:manddu:dx.Whenm:l,u:O;whenw:Z,u:1. Thus,

1
JRoVETTde = [+ yidu = [L08 4t du = [2P 4 307 = 242220

d
Letu =Inz, so du = 22 Whenz = e,u = 1; when z = e*; 4 = 4. Thus,
x

4

e 4 4
/ dz - / w2 gy = 2[11,1/2] =2(2-1)=2.
e TVinz 1 1

4
/o (—xi_a;? does not exist since f(z) = (—m_l—z); has an infinite discontinuity at = 2.

Letu = 2% +a? sodu = 2zdr and z dz = %du. When z = 0, u = a?; when z = a, u = 2a2. Thus,

a 202 2a2 2a2
/0 zvV 2?2 +a?dr = /2 u1/2(% du) = %[gua/z] = {%“3/2}

a2

a?

$@a?)? - (@] = §(2v2 - 1)a?

i

1+ (a little more than 5 -1-0.7), or about 1.4. The exact area is given by
A= fol V2x +1dz. Let w = 2z + 1, so du = 2dz. The limits change to
2:-0+1=1and2-1+1=3,and

3
A= [} Vu(3du) = §[3v%7] =3(38v3-1) = V3~ L~ 1300,
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73. First write the integral as a sum of two integrals:
I= ffz(:v 134 —a2de =1+ 1 == ffz zvVA— 22 dz + f_22 3+v/4 — z2 dz. I, = 0 by Theorem 7(b), since
flz)== v/4 = 12 is an odd function and we are integrating from z = —2 to x = 2. We interpret I as three times
the area of a semicircle with radius 2,s0 / =043 - % (7r . 22) = 6.
75. First Figure Letu = \/z,50x = uw?and dz = 2udu. Whenz = 0, u = 0; when z = 1, v = 1. Thus,
Ay = fol eVede = [ e*(2udu) = 2 [ ue® du.
Second Figure Ay = [ 2ze® dz = 2 f, ue" du.
Third Figure  Letu = sing, so du = cosz dx. Whenz = 0, u = 0; when z = , u = 1. Thus,
Az = 0”/2 €S % gin 2 dx = 0"/2 "% (2sinx cosx) dr = fol e*(2udu) =2 fol ue® du.

Since A; = Ax = As, all three areas are equal.

77. The volume of inhaled air in the lungs at time £ is

V(t)= fot flw)du = g %sin(-zs—’r u)du = 027”/5 % sinv(% dv) [substitute v = —2-51u, dv = 2?” du]
= [— cosv}g"t/s = 2 [~cos(%t) + =21~ cos(2£¢)] liters

79. Let u = 2z. Then du = 2dz, so [ f(22) dx = f; Flu)(3 du) = 3 [ f(u)du = £(10) = 5.
81. Let w = —z. Then du = —dx, so

[P f(—a)de = [7) flu)(—du) = [5F f(u)du= [~ f(z)da

Yi

y=fx

From the diagram, we see that the equality follows from the fact that we
are reflecting the graph of f, and the limits of integration, about the
y-axis.

83. Letu=1—2xz. Thenz = 1 — wand dz = —du, so

[lat(l—z)de = [0 (1 —u)* ub(=du) = [} u®(1 —uw)*du= [, «"(1 - 2)*da.
0 1 0 0

: . . |
85. - j—sé(r)l:;x =z jlgzz — = zf(sinx), where f(t) = T By Exercise 84,
T zsing i x [T x [™ sinz
Y dr= (sing) do = & ) de = T _sinz
/0 1+oos?z ° /0 zf(sinz) dx 2/0 f(sinz) dz 2/0 Rt
Let v = cosz. Then du = —sinz dz. Whenz = m,u = —land when z = 0, u = 1. So

E/" sinz dw__z/_l du _E/l du —z[tan‘lu]l
2 Jo 1+cos2z — 2); 14w 2/ 1+u® 2 -1

. g [tan_l 1-— tan”l(—l)] = 5[

NS
|
|
NE]
e
I
N
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5.6 The Logarithm Defined as an Integral

1. (@ y We interpret In 1.5 as the area under the curve y = 1/z from z = 1 to
A
D @ = 1.5. The area of the rectangle BCDE'is 3 - 2 = . The area of the
E Yy=x
trapezoid ABCD is § - 3 (1+ 2) = 5. Thus, by comparing areas, we
B C
Ol 1 15 x observethat 3 <Inl5< 5.

(b) With f(¢t) = 1/t, n = 10, and Az = 0.05, we have

In1.5= [,"°(1/t) dt ~ (0.05)[ £(1.025) + f(1.075) + -+ + £(1.475)]
=(0.05)[ 155 + 1o + - + T3] ~ 0.4054

3 y TheareaofR-isLandsol+l+-~-+l< nldt—lnn
' | 23 n Syt
0
.1 1 1 1
y The areaof S;is —andsol + =+ .-+ —— > —~dt = Ilnn.
% 2 n—1 1t
0
1 1 1 1 1
ThuS,§+§+"'+'T—L<1nn<1+§+"'+m.

5. If f(z) = In(z"), then f'(x) = (1/z")(ra"""!) == r/z. Butif g(z) = rInz, then ¢'(z) = r/x. So f and g must

differ by a constant: In(z") =rlnz+ C.Putz =1: n(1") =rIn1+C = C=0,s0ln(z")=rlnz.

7. Using the third law of logarithms and Equation 10, we have Ine™ = rz = rlne® = In(e”). Since Inis a

one-to-one function, it follows that e™ = (e,

9. Using Definition 13, the first law of logarithms, and the first law of exponents for e”, we have

(ab)w — % In(ab) _ e:z(lna+1nb) — e:z:lna+:zlnb — ezlnaezlnb = a®b®.
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5 Review

CONCEPT CHECK
1. (@) Y7, f(z) Az is an expression for i Riemann sum of a function f.
7 is a point in the ith subinterval [z;.-1, z;] and A is the length of the subintervals.
(b) See Figure 1 in Section 5.2.
(c) In Section 5.2, see Figure 3 and the paragraph beside it.
2. (a) See Definition 5.2.2.
(b) See Figure 2 in Section 5.2.
(c) In Section 5.2, see Figure 4 and the paragraph above it.
3. See the Fundamental Theorem of Calculus after Example 8 in Section 5.3.
4. (a) See the Net Change Theorem after Example 5 in Section 5.4.

(b) f:f 7(t) dt represents the change in the amount of water in the reservoir between time ¢ and time t5.

5 (@) f61020 v(t) dt represents the change in position of the particle from ¢ = 60 to ¢ = 120 seconds.

® [ 61020 |v(t)| dt represents the total distance traveled by the particle from ¢ = 60 to 120 seconds.

(c) f6102 0 a(t) dt represents the change in the velocity of the particle from ¢ = 60 to t = 120 seconds.
6. (a) [ f(z) dw is the family of functions { F" | F’ = f}. Any two such functions differ by a constant.
(b) The connection is given by the Evaluation Theorem: ff f@)dz = [ f(=) dw]z if f is continuous.

7. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this
theorem and the paragraph that follows it at the end of Section 5.3.

8. See the Substitution Rule (5.5.4). This says that it is permissible to operate with the dz after an integral sign as if it
were a differential.

TRUE-FALSE QUIZ

1. True by Property 2 of the Integral in Section 5.2.
3. True by Property 3 of the Integral in Section 5.2.

5. False. For example, let f(z) = 2. Then [, V22 dz = Jo wdw =%, but Vo z2dr = \/g =

7. True by Comparison Property 7 of the Integral in Section 5.2.
9. True. The integrand is an odd function that is continuous on [—1, 1], so the result follows from Theorem 5.5.6(b).
11. False. The function f(z) = 1/z* is not bounded on the interval [—2, 1]. It has an infinite discontinuity at z = 0,

so it is not integrable on the interval. (If the integral were to exist, a positive value would be expected, by

Comparison Property 6 of Integrals.)

13. False. For example, the function y = || is continuous on R, but has no derivative at z = 0.

o
o
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EXERCISES

1. (a) Lg = Zﬁj flzic) Az [Az =252 =1]
=1

= f(@0) - 1+ f(z1) - 1+ f(z2) -1
+f(@s) 1+ f(@a) - 1+ f(as) - 1
224354442+ (—1)+(-25)=38
The Riemann sum represents the sum of the areas of the four
rectangles above the z-axis minus the sum of the areas of the two
rectangles below the z-axis.

Mg = _26: f@) Az [Az= % =1]

(®

= f(ZT1) -1+ f(T2)- 1+ f(Zs) - 1

+f(@a) 1+ f@s)- 1+ f(@6) - 1
= f(0.5) + f(1.5) + f(2.5) + f(3.5) + f(4.5) + f(5.5)
% 3+39+344+03+(-2)+(—-29)=5.7

The Riemann sum represents the sum of the areas of the four

rectangles above the x-axis minus the sum of the areas of the two

rectangles below the z-axis.

3. fo (ac—l—\/l—ac?)da:—fo :vdm—!—fo Vi—z2dr =11 + I».

17 can be interpreted as the area of the triangle shown in the figure and > can be interpreted as the area of the

quarter-circle. Area = 1 (1)(1) + (7)(1)* = 5 + 3.
5. [0 f(x)de = [} f@)de+ [] flx)dz = 10=7+[]f(z)dz = []fle)dz=10-7=3

7. First note that either ¢ or b must be the graph of [, f(t) dt, since fo t) dt = 0, and ¢(0) # 0. Now notice that
b > 0 when c is increasing, and that ¢ > 0 when a is increasing. It follows that c is the graph of f(z), bis the graph

of f'(x), and a is the graph of [ f(t) dt.

9. [2(8c° +3¢%) de = [8- 12t +3-12%]) = [20* +4%)2 = (2- 20 +2%) — (2+1) =40 -3 =37



13.

15.

17.

19.

21.

23.

25,

21.

29.

31.

33,

35.

37
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9 9,2 9 9
/ —._\/E au du = / (u"l/z —2u)du = [2’111/2 - uz} =(6-81)-(2-1)=~
1 u 1 '

Letw =192 +1, sodu—2ydyandydy-%du Wheny =0, u = 1; when y = 1, w = 2. Thus,

Loy +1° dy= [P (3 du) = §[3u°); = 64— 1) = § = 2.

5

dt . . e N

/ (t_4—)2 does not exist because the function f(¢) = has an infinite discontinuity at ¢ = 4;
. l—

ool
(t—4)
that is, f is discontinuous on the interval [1, 5].

Let v = v%, so du = 3v? dv. When v = 0, 4 = 0; when v = 1, u = 1. Thus,

) v* cos(v®) dv = Jo cosu (3 du) = % [sin u] 3(sin1—0) = 1sinl.

fl et dt — [1 m](l):%(eﬂ~1)

4 02 4 2 4 4

/m%dw <12—|—£—m2>da:—-/ (:v_2+l—1)dm=[—l+ln|m|—m}

2 T 2 \ T T 2 T T 9
=(—3+l4—4) - (—3+m2-2)=In2-I

fl

Let u = 2° + 4z. Then du = (2z + 4) dz = 2(z + 2) d, so

2 -
___;1496 v (ldu) =1 22 4 O = u+C= 22 +4z+C.

Letu = sinwt. Then du = 7 coswt dt, so [sinnt cosmtdt = [u(L du) = £ 1u® + C = L(sinmt)® + C.

Letu:\/E.Thendu—2\/_ \/;dw—2/e”du=26“+0——.2e‘/5+0.

—sinz |
dr = — tanx dx, so
08 T

Let u = In{cos z). Then du =

tanzIn(cosz)dr = — [udu = —2u? + C = —L{ln(cos z)]*> + C.
2 3

-3
_ 3 x _]. 1 _ _ 4
Letw =1+ 2% Then du = 4z dw,so/ —1—_1_—m4dm—Z/;du-%hﬂu[—}—(?-%ln(l—}—w )+C.

Let u = 1+ secf. Then du = sec8 tan6db, so

secd tanf 1 1
/—m—dt‘)—/m(secetanﬂdt?)—/Zdu—ln|u|—|~C’—ln|1+sec0|+C’

Sincez® ~4 < 0for0 <z < 2andz®? -4 > 0for2 <z < 3, Wehavela: —4| —(z? —4) = 4 — 2 for

0§:c<2and|m —4|:a: —4for2 <z < 3. Thus,

/03}w2—4}dx:f02(4—m2)dm+/ (¢ —4)dx = [m——}

= (8-%)-0+(9-12)— (§-8) =

Ho
I
w[w OJ’H

Wlm
wio
WIﬁ

wl
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In Exercises 39 and 40, let f(x) denote the integrand and F'(z) its antiderivative {with C' = 0).

39. Letw = 1 4+ sinz. Then du = cos x dz, s0

/ \/cloj-ws(iirfw = [u?du=2u"?+C=2I+sinz+C.

41. From the graph, it appears that the area under the curve y = z /Z

between z = 0 and z = 4 is somewhat less than half the area of an
8 % 4 rectangle, so perhaps about 13 or 14. To find the exact value,
we evaluate

4
JyaVEde = [3a do = 227?347 =% =128

43. By FICl, F(x) = [ V1+tidt = F'(z)=+1+2%

3
x
45. g(z) = /0 \/;% Lety = g(u) and u = z°.
_dy dydu U 2 x3 2 3z®

Then ¢'(z)

3z* = 3z* = .
de  dudz 1+u® ’ V1+a? ’ V1+x?

z it 1Tt x t VT ot z _t
47.y=/ e—dt:/ e—dt+/ —e—dt=—/ e—dt+/ Cdt =
Vet vz t 1t 1t 1t

x ot
/ e?dt>.Letu= vz. Then
1

19.1f1<z<3thenvIZ+3< Va2 +3<V3ZF3 = 2<V22+3<2+3,50
23— 1) < f¥ Va2 ¥ 3dz < 2v/3(3 - 1); thatis, 4 < [} V27 + 3dz < 43,

5.0<z<1 = 0<cosz<1l = 2z%cosz<az® =

fol 22 coszdz < fol 7’ dz =} [a:s]; = 3 [Property 7].

1

53. cosz <1 = e"cosz<e” = [

e®coszdxr < fole”dm= e =e-1
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55. Let f(z) = v/1 + z? on [0, 1]. The Midpoint Rule with n = 5 gives

[ VI+ 23 de = L[f(0.1) + £(0.3) + £(0.5) + £(0.7) + £(0.9)]

= 1 [VIT 7 + VT @3F + -+ /T + (09F] ~ 1110

57. Note that r(t) = b'(¢), where b(t) = the number of barrels of oil consumed up to time t. So, by the Net Change

Theorem, fo r(t) dt = b(3) — b(0) represents the number of barrels of oil consumed from Jan. 1, 2000, through
Jan. 1, 2003.

59. We use the Midpoint Rule with n = 6 and At = 22=C% = 4. The increase in the bee population was
[ r(t)dt ~ Me = A[r(2) + 7(6) + 7(10) + r(14) + r(18) + r(22)]
a2 4[50 + 1000 4 7000 + 8550 + 1350 + 150]
— 4(18,100) = 72,400
61. By the Fundamental Theorem of Calculus, we know that F'(z) = [ ¢* sin(t?) dt is an antiderivative of

f(z) = z® sin(z?). This integral cannot be expressed in any simpler form. Since [ f d¢ = 0 for any a, we can

take o = 1, and then F(1) = 0, as required. So F(z) = [ ¢ sin(t?) dt is the desired function.

63. Area under the curve y = sinh cz betweenz = O0and z = 11is 4

equaltol = fol sinhexdz =1 = 1 [cosh cw] =1 =

i(coshc—1)=1 = coshc—1=c = coshc=c+1
From the graph, we get c = 0 and ¢ = 1.6161, butc = O isn’ta

solution for this problem since the curve y = sinh cz becomes y = 0
and the area under it is 0. Thus, ¢ = 1.6161.

65. Using FTC1, we differentiate both sides of the given equation, [ f(t) dt = ze** + [ e™* f(t) dt, and get

(1+2:v).

f(z)=e* + 2z +e7*f(z) = flx)(l-e ") =€ +2ze® = f(z)= —

67. Letu = f(x) and du = f'(z) d=. So2f f@ f (x)dz = 2ff(b)udu= [uz]ﬁz)) = [f(5))® - [f(a)]?.

69. Letu = 1 — z. Then du = —dxz, so fol (1—z)dx= fl w)(—du) = fol flu)du = fol f(=) dz.
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1. Differentiating both sides of the equation . sin 7z = f o Jf(t)dt (using FTC1 and the Chain Rule for the right side)
gives sin mz 4 7wz cos mx = 2z f (z?). Letting ¢ = 2 so that f(z®) = f(4), we obtain
sin2m + 2w cos 21 = 4f(4), 50 f(4) = (0 + 27 -1) = 2

1

3.For1§x§2,wehave:z:4§24=16,>;01+a:4Sl?and——l—2—.Thus,
14 z4 17
/—dw — Alsol4z*>zifor1 <z <2 80 —— ! <iand
1 1+ﬂv4 1+a% ot
2 —372
1
/1 ﬁl;zdx</1 “tdr = [%}1:—2—14—%-3 —2—74 Thus, we have the estimate
2
LA L S
177/ 1+a* - 24

1 cos 2 8 2 :
5 f(x) = ——— dt, where g(z) = 1+ sin(¢°) ]| dt. Using FTC1 and the Chain Rule (twice) we
=] 7= 9(@) = J57" [1+sin(#*)] g (twice)

have f/(2) = ——e— g/ (z) = —e
+ lg(a))?

[1+ sin(cos? z)] (- sinz). Now
1+ [g(2))®
9(%) = f) 1+sin(t?)]dt = 0,50 f/(3) = T +sin0)(-1) =1-1-(-1) = -1

<\.|

1. By I'Hospital’s Rule and the Fundamental Theorem, using the notation exp(y) = e¥,

*(1 — tan 2t)/t dt - Y=
m fo ( ) L lim (1 — tan 22) = exp (

lirm In(1 — tan 2x)>
z—0 €T x—0 1

z—0 X
2 exp( lim —2sec” 20 =ex 2.1 =e7?
TP T —tan2r ) T TP\ 70 ) T

9. f(z) =2+z—2"=(—2+2)(2+1)=0 & z=2o0rz=-1 f(z)>0forz e [—1,2]and f(z) <0

everywhere else. The integral f: (2 +z-—- :vz) dx has a maximum on the interval where the integrand is positive

whichis [—1,2]. Soa = —1, b = 2. (Any larger interval gives a smaller integral since f(z) < 0 outside [—1, 2].

Any smaller interval also gives a smaller integral since f(z) > Oin [—1, 2].)

11. (a) We can split the integral [* [z] dz into the sum ) [ fz_l [=] dx] . Buton each of the intervals [i — 1,4) of
=1

integration, {z] is a constant function, namely ¢ — 1. So the ith integral in the sum is equal to
n n—1 -
(¢ = 1)[i = (¢ — 1)] = (¢ — 1). So the original integral is equalto S (i — 1) = 3 i = w
i=1 i=1

249
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(b) We can write fab [z] dz = fob [z]dz — [ [2] d=
Now [ Ob [z] dz = foﬂbﬂ [z] dz + |, Hl;]] [z] dz. The first of these integrals is equal to 2 ([5] — 1) [], by part (a),
and since [z] = [b] on [[8] , ], the second integral is just [b] (b — [4]). So
f;’ [z] dz = §([6] — 1) [6] + [b] (b~ [b]) = % [5] (2b — [b] — 1) and similarly
Jo [zl dz = § [a] (2a — [a] — 1). Therefore, fab [z] dz = 5 [8] (2b — [b] — 1) — 2 [a] (2a — [a] — 1).
13. Differentiating the equation [ f(£) dt = [f(z)] using FTC1 gives f(z) = 2f (@) f'(z) =
f@)2f'(z) - 1] =0,50 f(z) =0or fl(x) = 1. fl(z) =% = f(z)= 1z 4+ C. To find C we substitute into
the original equation to get fom (%t + C) dt = (%:1: + 0)2 & imQ +Czx = ia:2 + Cz + C. It follows that

C = 0,50 f(z) = . Therefore, f(z) = 0 or f(z) = 3z.

15. NOtethat_( / [ / ft)dt] du) / #(£) dt by FTC1, while
dx[/ f(u)a:—udu]: [/f(u du}———[/ f(uudu}

=fs fwdu+zf(z) - f@)z = [T f(u)du

Hence, [* f(u)(z —u)du = [ [ [, f(t)dt] du + C. Setting z = 0 gives C = 0.

17. lim

m(\/ﬁm vt *‘T‘}:)
:nll—{lolo;<\/z—: n—l—2 n—l—n)
nn—>oon(\/1+1/n \/1+2/n+ +x/1JT1>

I VR

:/ mdw—[Q\/l—Fw] (\/5—1)
19. The shaded region has area [ f(z) dz = 3. The integral [} f~(y) dy ¥

gives the area of the unshaded region, which we know to be 1 — —% = %

So fy F ) dy = 2.




