6 (1 APPLICATIONS OF INTEGRATION

6.1 Areas between Curves

1.A:/::‘l(yT—yB)dx:/O4{(5x—.v2)—:c] dw:/04(4x—m2) &

=0

= 22"~ 4a¥p = (22 %)~ (©) = %

4= [ @n-ena= [ -0 -9

-1

1
= [ @ v = ) = (o3 (g me- g

5.A:/_21 [(9—2®) — (@ +1)] dz
:/_21(8~w—x2)dm
- {Bx_g_%g}:

=(6-2-5)~ (-s-}+)

10
—22-34+1=2 j/
x=-1

2

x'=2

= 2°-z=0 & zz-1)=0 & z=0,1.

1. The curves intersect when ¢ = z

1
A= (m—:c2) dzx 7
0
= [} - 3+°],

251
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11.A=/01(\/E_g;2)dm

1

_[2.3/2 1.3
“[3‘” 3“3]

0

wi= Wi
W=

13.12-22=22-6 & 2?=18 & z2=9 & z=243,5
3 3
A= / [(12 - 2%) - (2® — 6)] dz = 2/ (18 — 22%) dz by symmetry]
-3 o

=2 [18z — 22°)> = 2[(54 — 18) — 0] = 2(36) = 72

P (12 -x)—(x2—6)

B.lz=yz = 2=z = 2—4z=0 = z(z—-4)=0 = z=00r4s0

. 4 0
A=f4 (\/E—%(L')dm—i-ff (%m—ﬁ)dz: l%x3/2_im2}o+ [%m2_§w3/2]4
(B -9 -0+ (B 18- (- %) =S+ B 2=

o}
Ax

Ford <x<9
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17.2°=1-y & 2°4+y—-1=0 & (Q-1)y+1)=0 & y=Llor—Lsoz=3%or2and

A= 1-y) -2 dy= [P (1—y—2) dy=[y— L¢® - 2¢°]""
=(3-i-f)-(1-4+8)=F - (-8 =FH+%=4=%
y

19. The curves intersect when1 — 2 =32 -1 & 2=2y2 & ’=1 & y==L

253

sin 2x

21. Notice that cosx = sin 2z = 2sinzcosz & y=cosx
2sinzcosz —cosz =0 <& cosz(2sinz—-1)=0 & R
2sing =lorcosz=0 & z=For3.

of
™
s

A= fo"/s (cosx — sin 2z) dx + j:/sz (sin 2z — cosz) dz

= [sinz +  cos 21‘];/6 + [~ % cos 2z — sinz] :;2
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23. From the graph, we see that the curves intersect at = 0, z = , and z = 7. By symmetry,

E3 n/2 /2
A=/ cosm—<1—2—$) da:=2/ [cosm—(l—gii)]d$=2/ (cosz—l+%)dz
0 T 0 ™ ) T

/2

= 2[sinz -z + 12|} =2[(1—g—+%-1§)—0] =2(1-Z+3)=2-2

y

2

25. The curves intersect when z° = s 22422 =2 o 2'+22-2=0 &

2+ 1

(#®+2)(z-1)=0 & =1 & z==I

Il
[ 3]
gec—
[\
5
|
-
8
|
Y
8
w
ey
il
[\&]
g
[ 3]
ESE]
|
wh=
A —

21. An equation of the line through (0,0) and (2, 1) is y = 1; through (0, 0)
and (—1,6) isy = —6z; through (2,1) and (—1,6) isy = —3z + 4.
A= L2 [(-§z+ %) ~ (-62)] dz + [§ [(-32+ }) - §a] do
2
=2 (Bt R)de+ [§(-Ra+ ¥ da

=%ffl(m+l)dx+l—§’f02(—%m+1)d:r

=84 +a]’, + B [-1a* +2];

—$[0- G- D]+ B+ -0 =31+

wlts
-
I

wfe
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31. Let f(z) = cosz(%"l—:) - sinz(ff> and Az = =
The shaded area is given by
A= fol f(z)dzr ~ My
=:[fR) +1B)+1R) + F(3)]

~ 0.6407
33 2 From the graph, we see that the curves intersect at ¢ = +a ~ £1.02, with
2cosz > z° on (—a, a). So the area of the region bounded by the
~Sy=2cosx curves is
— y2
y= A= [% (2cosz ~ %) dzx =2 [ (2cosz — 2?) d
-12 5 12 =2[2sinz — 12°]; ~ 2.70
35. 1 From the graph, we see that the curves intersect at z = d-a ~ +0.86.
T
y= xcos(x?) So the area of the region bounded by the curves is
_o fa 2 3 — o Llain(pm2y_ 1,470
-1 5 { A=2 [ [mcos(m)—m]dz—Z[Esm(x)—Zm]o
y=x ~ 0.40
-1
37. As the figure illustrates, the curves y = z and y
y = 2° — 6% + 4z enclose a four-part region symmetric
—y=X

about the origin (since 2° — 62° + 4z and z are odd

functions of x). The curves intersect at values of  where
y=x’—6x>+4x

z® — 62° + 4z = z; that is, where x(z* -- 622 + 3) = 0.

That happens at z = 0 and where
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g2 0 V36— 12
- 2

=3+ /6; thatis, at z = —+/3 + V6, —/3 — /6,0, /3 — v/6, and /3 + /6. The exact
area is

/m

0

V346
|a:5 —62° +3m| dx

V3= V3+v6
=2/ (m5—6w3+3m)d:c+2/ (—m5+6m3——3m) dx
0 V36

2 |(w5—6m3+4m)-—w|dw=2/
0

ESR DRV

39. 1 second = 355 hour, s0 10's = 535 h. With the given data, we can take n = 5 to use the Midpoint Rule.

At = 1/360-0 1

= = a5 5O
distance gely — distance cuis = 01/ 360k dt — fol/ 80 podt = fol/ 380 (ug — wo) dt
~ Ms = 155 [(vk —ve)(1) + (vk —vo)(3) + (v — vo)(5)
+ (vk —ve)(7) + (vk —ve)(9)]
= 13551(22 — 20) -+ (52 — 46) + (71 — 62) + (86 — 75) + (98 — 86)]

=135 (2+ 6+ 9+ 11+ 12) = 25 (40) = & mile, or 1171 feet

#1. We know that the area under curve A betweent = Oand ¢t = z is [’ va(t) dt = sa(x), where va(t) is the velocity
of car A and s 4 is its displacement. Similarly, the area under curve B between ¢ = O and t = z is

Iy vB(t)dt = sp(z).

(a) After one minute, the area under curve A is greater than the area under curve B. So car A is ahead after one

minute.

(b) The area of the shaded region has numerical value s 4 (1) — sp(1), which is the distance by which A is ahead of

B after 1 minute.

(c) After two minutes, car B is traveling faster than car A and has gained some ground, but the area under curve A

from £ = 0 to ¢ = 2 is still greater than the corresponding area for curve B, so car A is still ahead.

(d) From the graph, it appears that the area between curves A and B for 0 < ¢ < 1 (when car A is going faster),
which corresponds to the distance by which car A is ahead, seems to be about 3 squares. Therefore, the cars
will be side by side at the time = where the area between the curves for 1 < ¢ < x (when car B is going faster)
is the same as the area for 0 < ¢ < 1. From the graph, it appears that this time is = = 2.2. So the cars are side

by side when ¢ ~ 2.2 minutes.
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y= X\/;‘—3 e
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To graph this function, we must first express it as a combination of explicit
functions of y; namely, y = +x /= + 3. We can see from the graph that
the loop extends from xz = —3 to z = 0, and that by symmetry, the area
we seek is just twice the area under the top half of the curve on this
interval, the equation of the top half being y = —x v/z + 3. So the area is
A= 2f_03 (—= vz +3) dz. We substitute u = & + 3, 5o du = dz and

the limits change to 0 and 3, and we get

A=-2 f03 [(u—3)vuldu=—2 f03 (u3/2 - 3u1/2) du

=2 [%u5/2 - 2u3/2} =

~2[2(V3) - 2(3v3)] =% V3

0

By the symmetry of the problem, we consider only the first quadrant,

wherey =22 = z= /Y. We are looking for a number b such
" ” b 4

that f3 Gy = i vidy =3[y =3[ =

BE=432 32 = =8 = P¥P=4 =

b=42/3 ~ 252,

47. We first assume that ¢ > 0, since ¢ can be replaced by —c in both equations without changing the graphs, and if

49,

¢ = 0 the curves do not enclose a region. We see from the graph that the enclosed area A lies between z = —c and

x = ¢, and by symmetry, it is equal to four times the area in the first quadrant.

The enclosed area is

Azzlfoc(c2 —z*)dz = 4[0233 — %x?’];

SoA=576 & 8P =576 & =216 & c=V216=6

Note that ¢ = —6 is another solution, since the graphs are the same.

The curve and the line will determine a region when they intersect

at two or more points. So we solve the equation

/(2 +1)=mz = z=z(mz’+m) =

y= P2+ 1
-] / ' i
m £y = mx|
i 0 '
: L
! m

m(mm2+m)—m:0 = m(mx2—«—m—~1):0 =

z=0o0rmz’+m-1=0 = a:zOor:nzzl—_T;Lﬂ =
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z=0o0rz = j:‘/ % — 1. Note that if m = 1, this has only the solution z = 0, and no region is determined. But if

1/m—1>0 & 1/m>1 & 0<m < 1,then there are two solutions. [Another way of seeing this is to

observe that the slope of the tangent to y = x/(z? + 1) at the origin is ¢’ = 1 and therefore we must have

0 < m < 1.] Note that we cannot just integrate between the positive and negative roots, since the curve and the line

cross at the origin. Since mx and z/(2* + 1) are both odd functions, the total area is twice the area between the
curves on the interval [O, V1/m—1 ] . So the total area enclosed is

2/““":‘

0

o 0
=[n(l/m—-1+1)-m(l/m-1)] - (Inl-0)

=In(l/m)—-14+m=m—-Inm—1

6.2 Volumes

1. A cross-section is circular with radius 2, so its area is A(z) = 1r(a:2) .

V= [ Alz)dz = f017l'(.1:2)2d:1:=1|' S ztde =n(lz ](1) =z

CI
~

3. A cross-section is a disk with radius 1/z, so its area is A(z) = 7(1/z).

“/j*“””“/j”(i)z d““/f%"“”[*ﬂjﬂ[—% ~(-1]=3%

b y

ol
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5. A cross-section is a disk with radius /3, so its area is A(y) = 7 (/) 2,

V= [ AG)dy = 2 w(y) dy = = [ ydy = 7[37]} = 8n

7. A cross-section is a washer (annulus) with inner radius 22 and outer radius VT, s0 its area is

A(@) = n(vz)® - 7r(m2)2 = m(x —a*).

V=[A@de=n[j(z—a')de=r[ja® ~§2*]j=n(3 - }) = $5

9, A cross-section is a washer with inner radius y2 and outer radius 2y, so its area is
2
Aly) =7(2y)? ~n(¥®)" =79’ —v*).

V= [lAWdy = [l (4 —y*) dy=n[4y® - 17t =m(2 - 2) = G

259



260 O CHAPTER6 APPLICATIONS OF INTEGRATION

11. A cross-section is a washer with inner radius 1 — 4/ and outer radius 1 — , so its area is

AlR)=n(1—2)* -1l — vz)’ =7[(1 -2z +2%) - (1 - 2v/Z +2)] = n(~3z +2* +2Z).

V=[)Alx)de =7 [y (-3¢ +2>+2vZ)de

1
=7r[—%w2+%x3+§:c3/2]0 =n(-3+3)=3%

7
4

13. A cross-section is an annulus with inner radius 2 — 1 and outer radius 2 — 2, so its area is
Alz)=n(2— :1:4)2 —-r(2-1)7%= n(3 — 4z* +2°%).

1
0
208
a5

V=[! Alz)dz =2 [, Alz)dz = om [ (3 — 4a* +2®) dz = 273z — £2° + 12°]
=2r(3-5+3) =

5.V =l a(l-y)) dy=2[7r(1-v")" dy=2r 5 (1- 2" +v*) dy
=2fy- 3’ + 3’ =2r- § =

b

___________
- -~
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1.y=2> = 2= /9 for > 0. The outer radius is the distance from = —~1 to x = /y and the inner radius is

the distance from z = —1 10 z = 3.

V= fn{lvi- (0] - [~ (D] fay=nfy [(F+1)" - (67 +1)°] dy
=rfiyt2i+l-y* -2 —1)dy=m [ (y+27—y* —2°)dy
=l 477 -2 3] =3+ -2 -3 =Br

y y

|
—_
=
®
®
|
1
—
o
&

1
19. R, about OA (the liney =0): V = fol Az)dz = fol m(z3)?de =7 fol 28 dz = 71‘(:11,‘7:| o=

7

~ly

21. R, about AB (the line z = 1):
V=[Awdy = [y 71— ¥5)° dy = [ (1 - 20" +y*/%) dy
= w[y— W+ W] = a1~ G4 ) = 5
23. Ry about O A (the line y = 0):
V=Jy A)da = [§ [7(1)? - n(v3)*|do =7 [ (1 ~2)dz = n[o — a?] = m(1~ }) =
25. Ry about AB (the line xz = 1):
V= fo Apdy = J; [r(1)? - w1 =] dy =7 [§ [1 - (1~ 27 +")] dy
=nfo@’ -y dy=n[3’ -l =r(3-3) =5
21. PR3 about OA (the line y = 0):
V= [ Az)de = [} [ (vz)? —71'(3:"‘)2] de = [} (z ~ 2°) de = n[ia? - %a:7](1) =r(}-3)=4%.
Note: Let R =Ry + Ra + Rs. If we rotate R about any of the segments OA, OC, AB, or BC, we obtain a right

circular cylinder of height 1 and radius 1. Its volume is 7r>h = 7(1)% - 1 = 7. As a check for Exercises 19, 23,

and 27, we can add the answers, and that sum must equal 7. Thus, Z + Z + 52 = (24T )5 = g,

29. PR3 about AB (the line z = 1):
V =y Awydy = fy [r -y —n(1- 95)° | dy = [y [(1- 2" +4") — (1= 2*/° + /%] d

1 1
=7r/ (—2y2+y4+2y1/3—yz/s)dy=7r[ 2y° + 1’ + 30 - 21/5/3]0

—n(-3+iri-Y -

Note: See the note in Exercise 27. For Exercises 21, 25, and 29, we have % + 12 4 130 — (3£L4413) 7 — o,
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w/4
31.V:7r/ (1 — tan®z)? dz
0

B.V= 7r/07r [(1- 0)°> - (1 —sinx)2] dz

/7r [12 -(1- sina:)2] dz
0

T

BV = w/:/; {[3 = (P = [\/yTﬁ— (_.2)]

2v2
_2ﬁ

[52 - (m‘i- 2)2] dyy

37.

y=In{x + 1j

=]

3. V= ﬂ'/o7r {[sin2 T — (—1)]2 -[0- (—1)]2} dz

cas 11 5
S 87r

2
jo

sin x

x=-2

¥ (3,-2V2)

y = z> and y = In(z + 1) intersect at z = 0 and at
Tz =a~0.747.

V= 7r/a {[ln(a:-Q— H? -~ (12)2}@ ~ 0.132

=sin’x




a1,

45,

47.

49,
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m [ 0" /2 ¢os? & dz describes the volume of the solid obtained by rotating the region

R ={(z,9) |0 <z < %,0 <y < cosz} of the zy-plane about the z-axis.

1 1
. T / (y4 - ys)dy =1 / [(y2)2 = (y4) 2] dy describes the volume of the solid obtained by rotating the region
0 0

R = {(z,y) | 0 <y < Ly* <z <y?} of the zy-plane about the y-axis.

There are 10 subintervals over the 15-cm length, so we’ll use n = 10/2 = 5 for the Midpoint Rule.

V = [}% A(z) de = Ms = 2272[A(1.5) + A(4.5) + A(7.5) + A(10.5) + A(13.5)]
= 3(18 + 79 + 106 + 128 + 39) = 3 - 370 = 1110 cm®

We’ll form a right circular cone with height A and base radius 7 by y
(h,r
revolving the line y = %z about the z-axis. y=5x )
h 2 h .2 2 171 h
V:W/ (zm) d.’l::ﬂ’/ %w2dm=wr—2[—x3] ! N
0 h o) h h 3 0 0 (h, 0) \j X
2
ol 1,
—7rh2<3h ) =3z h
Another solution: Revolve x = —% y + 7 about the y-axis.

B T 2 * h 7'2 2 2’]"2 2
V—Tr/o (——ﬁy—f—r) dy-—7r/0 [ﬁy —Ty—i-r}dy

r? r2 h
= W[___y?’ ——y?+ sz] = w(%rzh —r?h+ rzh) = %71'7‘217,

3h? h o
* Or use substitution withu = r — % yand du = —% dy to get
0 h hl1 5]° R 1 1
2 3 3 2
ﬂ'\/r U (——;— du) = ~7r?[§u :lr = -'—71’;(—5’[‘ ) == §Tf1" h. Z| (r,0) x

7 {2r® — (r — h)[3r% — (r* = 2rh + B?)] }
7 {2r® — (r — h)[2r® + 2rh — k?]}

wi= Wl W=

7r(21"3 —2r® — 202K + A% + 2r%h + 2rh® — h3)
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2 h-
274 y,soa:b(l——%).

51. For a cross-section at height y, we see from similar triangles that —— b / 7 =%
Similarly, for cross-sections having 2b as their base and 3 replacing a, 8 = Zb( - %) .So
h R y y
V=/ AW)dy:/ p(1-3)] [20(x - )] aw h%y
2y y? —a—N k==
E 2b2 == = 2 2/ 1—-=2 = ]
/0 (1 ) dy =2b 5 + bE dy yl

3 qh
- Y =
_2b2{y—7+ﬁ§:l 2b2[h—h+%h]

2b°h [ = 1 Bh where B is the area of the base, as with any pyramid.]

33. A cross-section at height z is a triangle similar to the base, so we’ll multiply the legs of the base triangle, 3 and 4, by

a proportionality factor of (5 — z)/5. Thus, the triangle at height z has area

) ) -

A =333

V= A(z)dz =6 [ (1 - 2/5)dz
[u=1-2/5du= —3dz]

=6 [0 u?(~5du)
~30[%u®]] = —30(~1) = 10 cm®

typical cross-
section of length

55. If [ is a leg of the isosceles right triangle and 2y is the hypotenuse,
2
ﬂ 2y = /36 — 9x?

thenl? + 1> = (2y)° = 22=4y® = PP =22

V=2 A(a:)dm—QfoA(x de=2f21 9:=2f02y2d$
2— x
2 24_m2)d1,' &J/

=22 4(36 - 90%) de = 3 J2(

1

= §lao- 3, = 58— §) = 2t

57. The cross-section of the base corresponding to the coordinate y has length

=(27)° = 4y, 50
=3

2z = 2,/y. The square has area A(y)

V= [y Ay) dy = J; dydy = [24°];
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59. A typical cross-section perpendicular to the y-axis in the base has length

£(y) = 3 — 2y. This length is the leg of an isosceles right triangle, so
A(y) =1 [2(y)]* [4bh with base = height]

= 13- 3))" =304’

Thus,
V:fo2 Aly)dy =3 louz(—2du) [u:l—%y,du:—%dy]
3710
=-9[35v°]; =—9(-3) =3
61. (a) The torus is obtained by rotating the circle (z — R)® + 3* = r? y

about the y-axis. Solving for z, we see that the right half of the ri*=4g (};)/,,\x= )
/

circle is given by z = R + /72 — y? = f(y) and the left half by [

0 \ (iy x
z=R~—/r?—y%=g(y). So —t .

V=n [l {fF - oI’} dy
=or [y [(B2+ 2R/ =P+ —¢?) — (R = 2R /P =g + 12 —¢?) | dy

=27 [[4R\/r? —y?dy =87R [ \/r? — 3y dy

(b) Observe that the integral represents a quarter of the area of a circle with radius r, so
8nR [y \/r? —y?dy =8rR- ;7r® = 2r%r?R.

63. (a) Volume(S:) = foh A(z) dz = Volume(S,) since the cross-sectional area A(z) at height z is the same for both

65. The volume is obtained by rotating the area common to two circles of

solids.

(b) By Cavalieri’s Principle, the volume of the cylinder in the figure is the same as that of a right circular cylinder
with radius 7 and height h, that is, mr3h.

radius r, as shown. The volume of the right half is

Vﬁghlzwfg/zyzdwzwfg/z ['rz— (%r+:c)2] dz

r/2

=t —4(r+0)*]" =x[(3r° - 4r) - (0- &r°)] = £mr’

\(x +%)z+ y2=r?

So by symmetry, the total volume is twice this, or 7.

Another solution: We observe that the volume is the twice the volume of a cap of a sphere, so we can use the

formula from Exercise 49 with h = 172 V =2 Lah?(3r — h) = 27 (3r)*(3r — &r) = Snrd.
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61. Take the x-axis to be the axis of the cylindrical hole of radius .

A quarter of the cross-section through y, perpendicular to the

y-axis, is the rectangle shown. Using the Pythagorean Theorem

twice, we see that the dimensions of this rectangle are y N
r
R i
z=+R?—y?andz = +/r?> —y?,s0 >
z R

TAW) =22= /17— /R?— 37, and N
Ve[ AW)dy= [T, 4T T dy

8y RV

69. (2) The radius of the barrel is the same at each end by symmetry, since the

function y = R — cz? is even. Since the barrel is obtained by rotating

the graph of the function y about the z-axis, this radius is equal to the

value of y at z = 3k, whichis R — c(%h)2 =R-d=r.

(b) The barrel is symmetric about the y-axis, so its volume is twice the volume of that part of the barrel for z > 0.

Also, the barrel is a volume of rotation, so

V= 2f0h/2 my?dz = 2w foh/2 (R-- ch)Z dz = 2r[R’z — 2Rex® + 1c°a®) 2/2

=2r(3R’h — L Rch® + {&5¢°h°)
Trying to make this look more like the expression we want, we rewrite it as
V = 37wh{2R* + (R® — jRch® + c°h*)]. But
R? — LRch® + &c®h* = (R~ 1ch?)® — Lc®ht = (R—d)? — 2(3ch?)® =2 — 242,

Substituting this back into V', we see that V = 3wh(2R? + r* — 2d?), as required.

6.3 Volumes by Cylindrical Shelils

1. y If we were to use the “washer” method, we would first have
x=gy(y)

= / (a,b) x= gy to locate the local maximum point (a, b) of y = z(z — 1)*

using the methods of Chapter 4. Then we would have to

1 * solve the equation y = x:(z — 1) for z in terms of y to

obtain the functions z = g; (y) and z = go(y) shown in the
first figure. This step would be difficult because it involves
the cubic formula. Finally we would find the volume using

V=n [ {lon@) - lo2(v))} dy.
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Using shells, we find that a typical approximating shell has radius z, so its circumference is 27 z. Its height is y, that

is, z(z — 1)*. So the total volume is

1 1 z° 2 B x
V= 27r9:{m(9c—-1)2]dw=27rf0 (m4—2x3+m2)da:=27r[——2——+—J = —
5 4 3], 15
2 1 2
3.V=/ 27rm-—da:=27r/ 1dz y
1 r 1

=21 [z =2r(2 1) = 2n

5V = fol orze" dz. Letu = z°.
Thus, du = 2x dzx, so

V= 7rf01 e “du= 71'[—6_“] !

0]

= (1 - 1/e)

1. The curves intersect when 4(z ~ 2)> = 2% — 4o +7 o 422 - 162+ 16 =22 —4z2+7
322 1224+ 9=0 & 3(a®-42+3)=0 & 3(x—1)(z—3)=0,502=1o0r3.
V=2 [} {z](2? — 4z + 7) —4(z - 2)°] }dz =27 [ [z(2® — 4z + 7 — 42 + 162 — 16)] dz
=2r [2 [2(-3a% + 122 — 9)] dz = 27(-3) [ («® — 42® + 3z) dz = —6r[tz' — 32° + %mﬂf

=—6r[(% -36+2) - (3 -4 +2)] =-6r(20-36+12+ 3) =—6mr(-%) = 16m
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9.V :f12 27ry(1+y2) dy=27rf12 (y+y3) dy=27r[%y2+iy4]1
=2 +4) - (3 + 1)) = 2n(3) - %

y

v

8
nv= 27r/0 (5 — 0)] dy

8 8
= 27r/ y4/3 dy = 27r[%y7/3}
0

6

67 768m
7§70 = S5

7

13. The curves intersect when 4z =6 — 2z < 22°+2-3=0 & (22+3)(2—1)=0 & z=-orl

Solving the equations for = gives us y = 4% = z = :t% yand2z+y=6 = x= —-;-y + 3.

v=or [ {0GvE) - (3l v k2 [ {ul(-u+9) - (D))o

9 4 9
27r/0 (y\/yj)dy—k%rl1 (-—%y2+3y -+ %y‘o’/?) dy=27r[§y5/2]0+27r[—%y3+%y2+%y5/2]4
= 2n(3-32) + 2n (- 4+ 0 4 20) - (~R 4 24+ )

128 43 1250 250
=1Br+2r($R) = 8 "=

y
EONN
(1,4)
2x+y=6
y=0 0 \ X
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1} y y

1.V = [221(4 — 2)2® dz = 2 [$2°® — lw"‘]z y i y

y
2,4) |
=w[(#-4)-(§-D] =% @9

19.V = foz 27(3 —y)(5 — z)dy
= f02 2r(3—y)(5—y* — 1) dy
= f02 2m(12 — 4y — 3y* +9°) dy y
=on[12y — 2 —¢° + %y‘*]z
= 2m(24 -8 — 8+ 4) = 24~

2.V = flz 2rzlnz de 8.V = [ 2nfz - (-1))(sin z — 2*) do
y y -
<
y = sin(7x/2)
ol x=—1 \
\\<:~_> 0 I 2 X
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n/4—-0 =«

2]. Az = T -1

V= [T orz tanwde 27 - & (& tan & + 32 tan 32 4+ 5% tan 5T 4 17 tan 1) ~ 1.142

29. [ 272® dz = 2n [ x(z*) dz. The solid is obtained by rotating the region 0 < y < x*, 0 < = < 3 about the

y-axis using cylindrical shells.
3. fol 270(3 — y)(1 — y*) dy. The solid is obtained by rotating the region bounded by (i) « = 1 — 32, z = 0, and
y=0o0r (i) z =197 z =1, and y = 0 about the line y = 3 using cylindrical shells.

33. 1.2 From the graph, the curves intersect at z = 0 and at ¢ = a = 1.32, with

x4+ 2? — z* > 0 on the interval (0, a). So the volume of the solid
obtained by rotating the region about the y-axis is

-0.2 \ J1.5 V=21r/ [z(z+;c2 —z4)] dz=27r/ (z2+z3 _m5)dz
0 0

= 277[%:1:3 +iz* %xe]; ~ 4.05

/2
3%V = 271'/ (3 —=2) (sinzw — sin* z)] dx
0

CAS 1 3
= 5T

31. Use disks:
V=f_127r(:7;2 +a:—2)2 dx = 7rf_12 (z* +22° — 32° —dz + 4) dz

=n[iz +%w4—m3—2m2+4z]1_2=1r[(-§;+%—1—2+4) ~ (-2 +8+8-8-8)]

39. Use shells: I N
V= [} 2nfe — (-1)][s - (= + 4/2)] do T \9: 56 5/_ :
=2 [{@+ D)5~ 2~ 4/s)dz L y= ’
=20 [} (o= o* =445 -2 4/a)da
=2n [} (—w2+4w+1—4/x)dx=27r|:_:1§.m3+2z2+w_41nz]i 15 -

=2r[(—% +32+4-4Ind4) — (-3 +2+1-0)]
=21(12 — 41n4) = 87(3 — In4)
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2 2 2 3 8 4
a, Usedisks:V:ﬂ'/ [\/1—(];——1)2} dy:w/ (2y——y2)dy=7r[y2—%ys]ozw(4-—— g) =37
0 0

B.V =2 [ 2rxvr?—a?de = -2r [ (r’ - 2?) 1/2(—212) dr = [—2% 2 (r? - x2)3/2}r

=—4m(0—7r%) =273

T T 2 3 29" 2 2
45.V=27r/ m(—ﬁm—}—h)dw:%rh/ (—w——l—:c dx = 2rh ——:f——i—g— :27rhr_::7rrh
0 r o r 3r 2],

6.4 Work

1. By Equation 2, W = Fd = (900)(8) = 7200 J.
b T 10 4
3.W=/fa: dm:/ ————dm:]O/ — du [u=1+z, du=dzx]
a @) o (14z)? 1 u?
1 .
= 10[—;} = 10(—5 +1) = 91tlb
5. The force function is given by F'(x) (in newtons) and the work (in joules) is the area under the curve, given by
I3 F(z)dz = [} F(z)dz + [J F(z)dz = 1(4)(30) + (4)(30) = 180 1.
1. 10 = f(z) = kz = 1k [4inches =  foot], sok = 301b/ftand f(z) = 30z. Now 6 inches = % foot, so
= [/* 30z dz = [152%] /% = 1 fult.
0.12

9. If f** kawdz = 2J, then 2 = [Lkz?],
Thus, the work needed to stretch the spring from 35 cm to 40 cm is

= 1k(0.0144) = 0.0072k and k = 5575 = 22 ~ 277.78 N/m.

0.10 2500 1250 ,,211/10 _ 1250/ _L 1) — 25
vos o mdr = [F0%] 0 =155 — ) = 53 ¢ L.04T.
M. f(z) = kz,5030 = Bz andz = 22 m = 10.8 cm

In Exercises 13-20, n is the number of subintervals of length Az, and ;' is a sample point in the 4th subinterval [;—1, ;).

13. (a) The portion of the rope from z ft to (@ -+ Az) ft below the top of the building weighs % Az Ib and must be
lifted ; ft, so its contribution to the total work is 1x;‘ Az ft-1b. The total work is

W = lim E2cczAc=

n—»oo

o twde = [22?])0 = B0 = 625 ft-lb

Notice that the exact height of the building does not matter (as long as it is more than 50 ft).

(b) When half the rope is pulled to the top of the building, the work to lift the top half of the rope is

Wi = 25 1 srdzr = [1:22] (2)5 = @ ft-Ib. The bottom half of the rope is lifted 25 ft and the work needed to
accomphsh that is Wy = 50 1-25dz = Z£[z]3] = %25 fi-Ib. The total work done in pulling half the rope to

the top of the building is W W1 + Wy = 828 4 835 625 =2.625 = 1855 fi 1p,

15. The work needed to lift the cable is lim "7, 22} Az = [7°° 2z dz = [2%]° = 250,000 ft-lb. The work

needed to lift the coal is 800 1b - 500 ft = 400,000 ft-Ib. Thus, the total work required is
250,000 + 400,000 = 650,000 ft-Ib.
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17.

19.

21.

23,

25.

At a height of z meters (0 < z < 12), the mass of the rope is (0.8 kg/m)(12 — z m) = (9.6 — 0.8z) kg and the
mass of the water is (22 kg/m) (12 — z m) = (36 — 3z) kg. The mass of the bucket is 10 kg, so the total mass is
(9.6 — 0.8z) + (36 — 3z) + 10 = (55.6 — 3.8a:) kg, and hence, the total force is 9.8(55.6 — 3.8z) N.

The work needed to lift the bucket Az m through the ith subinterval of [0, 12] is 9.8(55.6 — 3.8z} )Awz, so the

total work is

12
W = lim z 9.8(55.6 — 3.877) Az = [,2(9.8)(55.6 — 3.8z) dz = 9.8 [55.6.7: - 1.9a:2]
0

= 9.8(393.6) ~ 38577
A “slice” of water Az m thick and lying at a depth of z} m (where 0 < z; < 3) has volume (2 x 1 x Az) m®,

a mass of 2000 Az kg, weighs about (9.8)(2000 Az) = 19,600 Az N, and thus requires about 19,600z; Az J

of work for its removal. So W = lim Z 19,600z; Az = 1/2 19,600z dz = [9800z” ]1/2 245017

TL—?OQ

A rectangular “slice” of water Az m thick and lying « ft above the bottom has width z ft and volume 8z Az mS.
It weighs about (9.8 x 1000)(8z Az) N, and must be lifted (5 — =) m by the pump, so the work needed is about
(9.8 x 10%)(5 — x)(8z Ax)J. The total work required is

W [3(9.8 x 10°)(5 — z)8z dz = (9.8 x 10%) [ (402 — 82%)dz = (9.8 x 10°) [202? ~ §2°]]

= (9.8 x 10°) (180 — 72) = (9.8 x 10)(108) = 1058.4 x 10° ~ 1.06 x 10°J
Measure depth  downward from the flat top of the tank, so that 0 < z < 2 ft. Then
= (62.5)(2v4 — 22 ) (8 Az)(z + 1) ft-lb, s0
W~ (62.5)(16) [2(z + 1) VE— a2 da = 1000( Pevi—dde+ [2VEi-a dw)

=1000[f;' /2 (} du) + 3n(22)] [Putu = 4 — 2%, 50 du = 22 dx]

B 1000([% : §u3/2]?} —i—7r) =1000(% + 7) ~ 5.8 x 10° ft-Ib

Note: The second integral represents the area of a quarter-circle of radius 2.

If only 4.7 x 10° J of work is done, then only the water above a certain level (call it ») will be pumped out. So we

use the same formula as in Exercise 21, except that the work is fixed, and we are trying to find the lower limit of
integration: 4.7 x 10° & [* (9.8 x 10%)(5 — &)8z dz = (9.8 x 10°) [202® — §z°]} <
4T x 10 ~ 48 = (20-3° — £ .3%) — (20n% - £R%) « 50

2h3 — 15h% - 45 = 0. To find the solution of this equation, we plot
2h3 — 15h% -~ 45 between h = 0 and h = 3. We see that the equation

0 3
is satisfied for h = 2.0. So the depth of water remaining in the tank is [ N
about 2.0 m. b
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21. V = nr?z, so V is a function of = and P can also be regarded as a function of z. If V1 = mrz: and Vo = mrizs,
then

W= /::2 F(z)dz = /sz ar? P(V (x)) dz

1

_ / T PV@)ave) et V(z) = 1, so dV(z) = 102 da]

V2
= P(V)dV by the Substitution Rule.
Vi

b

b b _
9. W= / F(r)dr = / Gm1;n2 dr = Gmams [—1} = Gmyims <1 - 1)
o o r T, a b

6.5 Average Value of a Function

3. Guve = %1_0f07r/2cosxd:c= 2[sing]}/? = 2(1-0) = 2

B fue = gig fote P dt =1 [P et (—Ldu) [u=—t? du=—2tdt, tdt = —1 du]

=%l =% (T -1 = (1-e7)

1. hae = =15 [T cos*r sinzdr = L [ u(~du) [u= cosz, du = —sinzdz]

u
=1 liutdu= 12 ffutdu=2[}] = &

1 5 )
9. (@ favezg_—zf ($—3)2dm:%[%(\$_3)3]2 ©
2
L 1 4 5,4)
=1[2° - (1)) =3B +1) =1
y={x=3
(b)f(c)zfave = (6—3)2—_—1 &S e—8 =41
& c=2o0r4
21 @1
1...
0 773 4 5 »x
1 LI .
M. @) fae = —~—/ (2sinx — sin 2z) dz © ,

L[—2cosz + 3 cos2a:]0 f
=z[@+3) - (-2+3)] = y=

(®) f(c) = fwe & 2sinc—sin2c=3 &
c1 7~ 1.238 or cp ~ 2.808 0 = ' G 7

1




214 O CHAPTERG6 APPLICATIONS OF INTEGRATION

13. f is continuous on [1, 3], so by the Mean Value Theorem for Integrals there exists a number c in [1, 3] such that
f13 fl@)dz = f(c)(3—1) = 8=2f(c); thatis, there is a number c such that f(c) = § = 4.
1 52 1 50 20

15 fue = grogg [ F@dm My = 55 [£(25) + £(35) + £(45)]
(38+29+48) 15 =381
1. Lett =0and t = 12 correspond to 9 A.M. and 9 P.M. respectively
Toe = 1555 o~ [50 + 14sin 7t] dt = L [50t ~ 14 - 12 cos mt] ;?

75[50 12414 - 12 4+ 14 12] = (50 + 2—8-)°Fz59°F
1 8 12
19. p,. =

9 pave \/ﬁ—
2. Ve %fo V(t)dt = %fo = [1=cos(Ent)] dt = & fo [1- cos(-gwt)] dt

=4 [t— £sin(2nt)]s =& [(5-0)-0]= & ~04L

/(:c+1)‘1/2 de = [3Vz+1]; =9 -3=6kg/m

23. Let F(zx) = [7 f(t) dt for = in [a, b]. Then F is continuous on [a, b] and differentiable on (a, b), so by the Mean
Value Theorem there is a number c in (a, b) such that F'(b) — F(a) = F'(c)(b — a). But F'(z) = f(z) by the
Fundamental Theorem of Calculus. Therefore, [ f f@®ydt —0= f(c}(b —a).

6 Review
CONCEPT CHECK

1. (a) See Section 6.1, Figure 2 and Equations 6.1.1 and 6.1.2.

(b) Instead of using “top minus bottom” and integrating from left to right, we use “right minus left” and integrate
from bottom to top. See Figures 11 and 12 in Section 6.1.

2. The numerical value of the area represents the number of meters by which Sue is ahead of Kathy after 1 minute.
3. (a) See the discussion in Section 6.2, near Figures 2 and 3, ending in the Definition of Volume.

(b) See the discussion between Examples 5 and 6 in Section 6.2. If the cross-section is a disk, find the radius in
terms of 2 or y and use A = 7 (radius)®. If the cross-section is a washer, find the inner radius ri, and outer
radius 7oy and use A = m(ra,) — 7(rd).

4. (a) V = 2mrh Ar = (circumference) (height) (thickness)

(b) For a typical shell, find the circumference and height in terms of z or y and calculate
V= f: (circumference) (height) (dz or dy), where a and b are the limits on x or y.

(c) Sometimes slicing produces washers or disks whose radii are difficult (or impossible) to find explicitly. On other

occasions, the cylindrical shell method leads to an easier integral than slicing does.

5. [ 06 f(z) dz represents the amount of work done. Its units are newton-meters, or joules.

6. (a) The average value of a function f on an interval [a, b} is fawe = 5

(b) The Mean Value Theorem for Integrals says that there is a number ¢ at which the value of f is exactly equal to
the average value of the function, that is, f(c¢) = fave. For a geometric interpretation of the Mean Value Theorem
for Integrals, see Figure 2 in Section 6.5 and the discussion that accompanies it.
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EXERCISES

10=2"-2-6=(z~3)(z+2) & z=3o0r—2. S0
A=[%,[0- (0* ~2—6)]do = [*, (~a* + 5+ 6) do

%ms + %x2 + 693]?:2

I

[_
(-9+2+18) — (§+2-12)

125
6

H

3 4 :fl)l [(el _1)_ (QJZ—ZE)] de
:fol(ez—l—m2+a:)dm= [6E—Qi¢—%m3+%m2]

=(e-1-3+3)-(1-0-0+0)=e— 1

1
0

7. Using washers with inner radius z? and outer radius 2z, we have

77/02 [(23:)2 - (:cz)z] de =7 /2 (42® — «*) da

J0

v

2
0

—nl4a* - ko] = (% -

g

) =32r-

&lw

__ 64rx
15

0. = [ {[0-4") - (1] - 0~ (-1} ay
= 277/03 [(10 — ) ~ 1] dy
=2r /3(100 —200° +y* —1)dy

3
=2 / (99 — 20y% +y*) dy = 2n[99y — 24® + 14°]]
0

= 27 (297 — 180 + 228) = 1656z
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1"

13.

15.

17.

19.

21.

The graph of z* — 4 = a? is a hyperbola with right and
left branches. Solving for y gives us y? = 22 —a? =
y = ++/xZ — a2. We'll use shells and the height of each
shell is v22 — a2 — (—v2% — a? ) = 222 — a2

The volume is V = [**" 272 2 /2% — a2 dix. To eval-

vate, let v = 2% — a?, 50 du = 2z dz and z dz = 1 du.

Whenz =a,u =0,and whenz = a + h,
u = (a+ h)*> —a® = a® + 2ah + h? — a® = 2ah + h>.

} 2ah+h?

Ths, V = 4r [7°"*" /i (3 du) = 27 [3u%/2] © = dn(2ah + 52)*%

V= fol w[(l - :1r:3)2 - (1= wz)z] dzx

(a) A cross-section is a washer with inner radius z2 and outer radius z.

V= fnfer - @) do= [ nle? - o) de = a3t~ 4ol = nld - 4) = B
(b) A cross-section is a washer with inner radius y and outer radius ,/y.

V= fin[(v0) -] dy= [y nlu—v?) dy =l — 3], =nli - 4] = 3
(¢) A cross-section is a washer with inner radius 2 — z and outer radius 2 — z2.

V= 7r[(2 ~a?)? = (2- w)z] de = [ 7(z* - 52® +4z) dz = n[}a® — 3a® + 2m2];

=r[i-3+9 =%

(a) Using the Midpoint Rule on [0, 1] with f(z) = tan(z?) and n = 4, we estimate

A= /01 tan(mz) dx ~ %[tan((%)z) + tan((g)z) + tan((g)z) +tan((%)2)] ~ 1(1.53) ~0.38

(b) Using the Midpoint Rule on [0, 1] with f(x) = = tan® (z?) (for disks) and n = 4, we estimate
1
- oyl 2((1)2 2((3)2 2((5)2 2((7\2)] & = ~
V_/o f(z)dz ~ 471'[1;&m ((s) >+’can ((a) )+tan ((s) )+tan ((s) )] ~ Z(1.114) ~ 0.87

The solid is obtained by rotating the region R = {(w, ¥)]0<z<%,0<y < cos m} about the y-axis.

The solid is obtained by rotating the region ® = {(z,y) | 0 <y < 2,0 < z < 4 — y*} about the z-axis.

. Take the base to be the disk z° +y*> < 9. Then V = f_33 A(z) dz, where A(zo) is the area of the isosceles right

triangle whose hypotenuse lies along the line z = ¢ in the xy-plane. The length of the hypotenuse is 2 /9 — x2
and the length of each leg is v2v/0 — 22. A(z) = 2(v2v0—22)" = 9 — 2%, s0
V=2[A(z)de =2 (9~ 2°) do = 2[92 — 12°]] = 2(27 - 9) = 36.
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25. Equilateral triangles with sides measuring %x meters have height %w sin 60° = %w. Therefore,

__ 8000v3 _ 125v3 m3

A(m):%.%ap@x- . f A(z) dm:‘ﬁ/_f%a:2dm-‘/_[3a:]0 s =

2. f(x)=kx = 30N=k(15-12)cm = k=10N/om=1000N/m. 20cm —12cm = 0.08 m =

= Jo " kadz = 1000 [z dz = 500 [2?] 0 = 500(0.08)> = 3.2 N-m = 3.2 ],

29. (a) The parabola has equation y = ax? with vertex at the origin and passing

f—8 ft——-—-I
through (4,4). 4 =a 4> = a=% = y=12> = 2?=4y ]
= 1z = 2,/y. Each circular disk has radius 2 vy and is moved 4 — y ft. 4 ft
4 2 \ l
W= [07(2y7) 6254 —y) dy=250r [ y(4d —y)dy
=2507 (2% — 14°]) = 2507 (32 — &4) = 2000z ~ g378 fi I =%

(b) In part (a) we knew the final water level (0) but not the amount of work

17
done. Here we use the same equation, except with the work fixed, and the { \
lower limit of integration (that is, the final water level — call it &) 0 4
unknown: W = 4000 < 2507 [2y* — %ys];t =4000 < L \J
17

lﬁ:[(32—6—;)—(2h2_§h3)] = h3—6h2+32—4_j:o, -

™

We graph the function f(h) = h® — 642 4 32 — 48 on the interval 0, 4] to see where it is 0. From the graph,
grap

f(h) = 0for h &~ 2.1. So the depth of water remaining is about 2.1 ft.

1 = . F(z+h)— F(x)
31. 11m fave = h m/ f(t) dt = Illi%————h—_ whereF .’L‘) f f(t dt But we

recognize this limit as being F'(z) by the definition of a derivative. Therefore, %in}) fave = F'(z) = f(2)

by FICI.
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1. (a) The area under the graph of f from 0 to ¢ is equal to fg f(z) dz, so the requirement is that jot f(z)dx = t3 for

all £. We differentiate both sides of this equation with respect to ¢ (with the help of FTC1) to get f(t) = 3t2.

This function is positive and continuous, as required.

(b) The volume generated from z = Oto z = b is fob 7[f(z)]? dx. Hence, we are given that b* = fob w[f (@)]? dz

for all b > 0. Differentiating both sides of this equation with respect to b using the Fundamental Theorem of

Calculus gives 2b = 7[f(0)]> = J(b) = \/2b/m, since [ is positive. Therefore, f(z) = /2z/m.

3. Let a and b be the z-coordinates of the points where the line intersects the y g — 2753
y=8x—27x

curve. From the figure, R1 = R2 =

Jo [e— (8z — 272%)] da = [’ [(8z — 272°) — ] du

[cx — 4% + 2—47-934]8 = [4:52 — 2747374 — cx]z

ac — 4a® + —24—7(14 = (41)2 - —24—7b4' — bc) - (4(12 - %a‘L — ac) 0 &
0=4b> — 20b* — be = 46° — Zb* — b(8b — 27b°)
= 4b? — Zp* — 8 + 27b* = bt — 4’
=0 (357 - 4)

Soforb> 0,02 =18 = b=% Thus,c=8b—27° =8(3) —27(555) = B -2 =%

5. (a) V = wh?(r — h/3) = §mwh®(3r — h). See the solution to Exercise 6.2.49.

(b) The smaller segment has height » = 1 — z and so by part (a) its volume is

V==1r(1-2)?3(1)-(1-2)]= 37 —1)?(z + 2). This volume must be % of the total volume of the
sphere, which is 27(1)%. So 37 (z — 2z +2)=3(5m) = (2 — 220 +1)(z+2) = 3 =

2 —3z+2= % = 3¢% — 9z 4 2 = 0. Using Newton’s method with f(z) = 32° — 9z + 2,

3z — 9z, + 2

. Taki . ~ 0.2222
922 — 9 Taking z1 = 0, we get z2 ~ 0.2222, and

f(x) = 9z% — 9, we get Tni1 = T —
z3 & 0.2261 = x4, so, correct to four decimal places, x ~ 0.2261.
(c) With 7 = 0.5 and s = 0.75, the equation z® — 3rz? + 475 = 0 becomes * — 3(0.5)z” -+ 4(0.5)*(0.75) = 0

= 23 -32244(13 =0 = 8z°—122% + 3 = 0. We use Newton’s method with
2 8/ 4

279
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823 — 1222 + 3
2422 — 24z,

z2 &~ 0.6667, and 3 =~ 0.6736 = . So to four decimal places the depth is 0.6736 m.

flz) =8z — 1227 + 3, f'(z) = 24z® — 24z, 50 Tpy1 = T, — Take 1 = 0.5. Then

(d) (i) From part (a) with 7 = 5 in., the volume of water in the bowl is

V = nh®(3r — h) = $wh?(15 — h) = 5wh® — 1wh®. We are given that % = 0.2 m*/s and we want to

dh dv dh dh dh 0.2
find — wh = 3. Ni = - _nh?= ===t -
n 7 when h = 3. Now — 7 = 107h o 7h pre SO 7 ~(10h — 12 When h = 3, we have
dh___02 1 0003in/s.

dt ~ w(10-3—32) 1057
(i) From part (a), the volume of water required to fill the bowl from the instant that the water is 4 in. deep is
V=14 4n(5)% - in(4)°(15 — 4) = £ - 1257 — 38 - 11r = Z7. To find the time required to fill the

bowl we divide this volume by the rate: Time = 7';’_'2 2 = 307~ 387 s ~ 6.5 min

7. We are given that the rate of change of the volume of water is %‘?f = —kA(z), where k is some positive constant

and A(z) is the area of the surface when the water has depth z. Now we are concerned with the rate of change of

the depth of the water with respect to time, that is, (in But by the Chain Rule, (fi‘t/ Z‘; (3: so the first equation
dvdz
can be written — P —kA(z) (%). Also, we know that the total volume of water up to a depth z is

V(z) = [, A(s)ds, where A(s) is the area of a cross-section of the water at a depth s. Differentiating this
equation with respect to z, we get dV/dz = A(z). Substituting this into equation %, we get

A(z)(dz/dty = —kA(z) = dz/dt = —k, aconstant.

9. We must find expressions for the areas A and B, and then set them equal and see what this says about the curve C.
If P =(a, 2a2), then area A is just [ (23:2 — 272) de = [ 2% de = —a . To find area B, we use y as the variable
of integration. So we find the equation of the middle curve as a functionof y: y = 22> & =z =./9/2,

since we are concerned with the first quadrant only. We can express area B as
a2 2a? 942 a2 . .
12 [\/y/2 - C’(y)] dy = [%(y/2)3/2]0 ~ [29 C(y)dy = 4a® ~ [2* C(y) dy, where C(y) is the function

2 2
with graph C. Setting A = B, we get 2a° = £a® — f02a Cly)dy & f:“ C(y) dy = a®. Now we
differentiate this equation with respect to a using the Chain Rule and the Fundamental Theorem:

C(2a%)(40) =3a®> = C(y) =2 ./y/2, wherey = 2a%. Now we can solve fory: =z =32 /y/2 =
1 1

2= 2(y/2) = y=3z’
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(a) Stacking disks along the y-axis gives us V' = fo w|f (y)]

v _dv dh _ pdh
(b) Using the Chain Rule, — Fa Ew=T [f(Rh)] e
dh

@) B/ = il h)]z— s & = o nlf PO =kAVE = [f(h)]2=%\/}_z N

f(h) = V o hY/4; that is, f(y) = 4/ :g 1/4, The advantage of having Zh = C is that the markings on the

container are equally spaced.
We assume that P lies in the region of positive z. Since y = z® is an odd
function, this assumption will not affect the result of the calculation. Let
P = (a,a®). The slope of the tangent to the curve y = z* at P is 3a”, and so
the equation of the tangent is y — a® = 3a%(z —a) < y = 3a’z — 2d°.
We solve this simultaneously with y = z® to find the other point of intersection:

z® =30’z — 2a° & (z—a)?(z+2a) =0.S0Q = (—2a, —8a%) is

the other point of intersection. The equation of the tangent at @ is

~ (—8a%) =12a%[z — (~2a)] & y =120’z + 16a°. By symmetry,
this tangent will intersect the curve again at x = —2(—2a) = 4a. The curve lies above the first tangent, and below
the second, so we are looking for a relationship between A = [, [2° — (3a®z — 24°)] d and

B = [*2 [(12a%z + 16a®) — 2°] dz. We calculate A = [*z* — $a’2® + 20°2]%, = $a* — (—6a*) = Za*,

4a

and B = [6a’2® + 16a°z — 2], == 96a* — (—12a") = 108a*. We sec that B = 164 = 2* A This is
because our calculation of area B was essentially the same as that of area A, with a replaced by —2a, so if we

replace a with —2a in our expression for A, we get 2L (—20)* = 108a* = B.



