8 [0 FURTHER APPLICATIONS OF INTEGRATION
8.1 Arc Length

Ly=2-3z = L=[", 1+ (dy/ Jdz)2de = [1)/1+ (-3)2dz =10 [L - (- 2)] = 3+/10.

The arc length can be calculated using the distance formula, since the curve is a line segment, so

= [distance from (—2,8) to (1, —=1)] = /[1 = (=2)]? + [(-1) — 8> = V90 = 3v/10
3 16 From the figure, the length of the curve is slightly larger than the

hypotenuse of the triangle formed by the points (1,0), (3,0), and
~15 (3, £(3)) ~ (3,15), where y = f(z) = 2 (2* — 1)3/2. This length

/ is about v/152 + 22 ~ 15, so we might estimate the length to
~0.5 & - —353.5
-1 5 be 15.5. y = %(mz - 1)3/2 = y = (9:2 - 1) 12 (2z) =

14+ ()% =1+ 42°(¢? — 1) = 42* — da® +1 = (22% - 1)2, 50, using the fact that 22° — 1 > 0for1 <z < 3,
L=[/(22% —1)%dz = J|2a? = 1] da = 222 —1)dz = [32° ~ m]i’
=(18-3)—(3-1) =% =153

5. y=1+62%2 = dy/dz=9z"> = 1+ (dy/dz)’=1+8lz. So
L= fo V1T 8lzdr = 82 u'/? (& du) {where © = 1 + 81z and du = 81 dz]

=& 3w = (2B

5
_z 1 dy 5 3 .
1. Yy = 6 + 1023 = d$ 6.'17 1()3; =
1+ (dy/da)® = 1+ 2a® — &+ 5o = Ba® 4§ + 5o = (§o* + fo7")" o
B S 2
b= /1 (§at + o)  do = | (32" + ") do = [12° — 179
8 L 1_1\y_3 , 7 _ 12061
~(#-%)-G-H)=%rh-

9 = %\/ﬂ(y—3) — %ys/:z —y1/2 = da:/dy = _y1/2 1y—1/2 =
2
1+ (de/dy)? =143y —t+ iyt =dy+3+3y " = (%y”2 + %y—”?) . So

L= J? (2024 3 ?) dy =3 [30° + 2] = 3[(3-27+2-8) = (31421

oD -3 -¥
2
1. y = In(secz) = dy _ secatans . o 1+(dy> =1+ tan®z = sec’ z, so
dx secT T

dx
/4
L = f"/4 V'sec? z dx = f;“ |secz| dz = 5/4 seczdr = [ln(secm + ta.nm)]o
In(v2 4 1) — In(1 +0) = In(v2 + 1)

339
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13.y=coshz = ¢ =sinhz = 1+ (')’ =1+sinh?z = cosh’z.
SoL = fol coshzdr = [sinhz]; =sinh1 = (e —1/e).

Boy=e" = y=¢ = 1+() =1+¢* S0

. e
L:/ \/l—i—ehdz:/ 1+u2d—zu [u=€"s0z =Inu, dz = du/y
0 1

e [ 2 14e2
:/ I—J;u—uduzf v dv [’u=\/1+u2,sov2=1+'u,2,'vd'v='u,du]
1 V2

=
v2 -1

—— n

/m(l.Fﬂ I/Q)d'v=[v+%l 1)_1]\/14'7

V3 v—1 wv+1 'v+1‘/§
/ 2 _ _
— 1+e2+llni—1—\/§—lln‘/§ 1
2 Vi+eZ+1 27 V241

=Vi+e-vVa+i(Vite-1)-1-In(v2-1)

Or: Use Formula 23 for [ (v/1+u?/u) du, or substitute u = tan 6.
17.y=cosz = dy/dc=—sinz = 1+ (dy/dx)® =1+sin’z. SoL = [7"+/1+sin?zdz.

9 z=y+y° = de/dy=1+3y> = 1+ (de/dy)’> =1+ (14+3y%)%=9*+6¢°+2.
SoL = [} /9y +6y2 +2dy.
Ny=ze® = dyf/dr=e®—ze®=e(1-2) = 1+ (dy/dz)’=1+e"2(1—1z)° Let
f(@) = /1+ (dy/dz)? = /T4 e 22(1 — z)% Then L = [, f(z)dz. Since n = 10, Az = 252 = 1. Now
L~ Sio = S2(£(0) +4F(3) +2(1) +47(3) +27(2) + 4£(3) + 2 3)

+4f (L) +2f(4) +4f(2) + f(5)] ~ 5.115840
The value of the integral produced by a calculator is 5.113568 (to six decimal places).

23. y=secr = dy/dr=secztanz = L= :/3f(:z:)d:1:,wheref(:t)=\/1+sec2:1:tan2w.
©/3-0 «
10 —g'(—).NOW

0 = S8 0 41(55) +21(55) +o7(55) + 24 (55) + /(35)

67 I 8w 9 ks
$ 2f(%> + 4f(—?5> s 2f(%) + 4f(§6) + f(—g)] ~ 1.569619.
The value of the integral produced by a calculator is 1.569259 (to six decimal places).

Since n = 10, Az =

25. (a) 3
-
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®) 3 Let f(z) = y = z /4 — z. The polygon with one side is just
' N

the line segment joining the points (0, f(0)) = (0, 0) and

(4, f(4)) = (4,0), and its length is 4. The polygon with two

sides joins the points (0,0), (2, £(2)) = (2,2 ¥/2) and (4,0).

0
Its length is

\/(2 02+ (292~ +\/(4 212+ (0- 2\/‘) =24+ 28/3 ~ 6.43
Similarly, the inscribed polygon with four sides joins the points (0,0), (1, ¥/3), (2,2¥/2), (3,3), and (4,0), so
its length is

2 2 2
\/1+(€/§) +\/1+(2\3/§— ¥3) +\/1+(3—2€/§) +vVIT9~ 750
.d_ - 2/3 o 12-4z
(c) Using the arc length formula with = = x[ (4—z)7%° (- 1)] + ¥ = 3a—a the length of the

curveis L = / 1 + d:c / 1+ 12 4z 1* dz

(d) According to a CAS, the length of the curve is L = 7.7988. The actual value is larger than any of the
approximations in part (b). This is always true, since any approximating straight line between two points on the
curve is shorter than the length of the curve between the two points.

— 2 2 1 2\ 2
. (1 fzz)z - [ %f—zz dy =In3 — 1 [fromaCAS] = 0.599
29 3 =1-2%% = y=(1—z2/3)3/2 = y
W3 (1-02) " (<o) = (1)
(%)2 - 33—2/3(1 2/3) = 2-2/3 _ 1. Thus 1%

L=4f01 1+(:B‘2/3-1)dz=4f011:‘1/3d:c=4lir(r)l [§w2/3]t 6.
t—0+

Ny=22%2 = y =322 = 1+ (y)* =1+ 9z. Thearclength function with starting point Py(1, 2) is

s(@)= [ V1+%di = [27(1+9t)3/2] = %[(1+92)%2 - 10v10

—G e use LAS] z v.,(,-a.'l’j
;[g\/rw ’“(3+\/r)] i, MR YOR Ry

0 \w[ FVITgEye

vio S

+1n(3+\/\)]
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33. The prey hits the ground wheny =0 < 180 — 2’ =0 « 2°=45.180 = z =+/8100 = 90, since
@ must be positive. y = ~Zx = 1+ W)Y =1+ ﬁwQ, so the distance traveled by the prey is

L:fogow/l—i—ﬁmzdw:f;m(%du) [u= 2z, du= % dz]
By VT +uZ+3n(u+ VIta?)],
LR2VIT+in(A+V17)] =45 V17T + LIn(4+ v17) ~209.1m

35. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in., so its
equation is y = 1sin(22z) = sin(Zx). The width w of the flat metal sheet needed to make the panel is the arc
length of the sine curve from z = 0 to z = 28. We set up the integral to evaluate w using the arc length formula

with & = Z cos(Zz): L= [2*1/1+ [Z cos(Ez)]) dz =2 [}* \/1 4 [Z cos(Zx)]” dz. This integral would

be very difficult to evaluate exactly, so we use a CAS, and find that L =~ 29.36 inches.

Ny=[TVEE—1dt = L=z5-1 [byFICl] = 1+(%§)2=1+(*/~’63—:1)2=z3 N

4
L= ['Valde = [}23/ da = g[zsﬂ]l =2(32-1)=2 =124

1=

8.2 Area of a Surface of Revolution

Ly=Inz = ds=./1+(dy/dz)?de=\/1+ (1/z)2dz = S=[2r(nz)/1+ (1/z)2dz [by (7)]
3.y=secz = ds=+/1+(dy/dz)?dxr =/1+ (secztanz)?dz =

= "/4 2nz 4/1+ (secztanx)?dx [by (8)]

3

5.y=2° = 3y =322 So
S=[lomy\/1+ () dz =2 [Jo*VI+0a%de  [u=1+92z% du = 362° dx]
145
36 1145 Vidu= % [3u3/2] o= Z (145 /145 — 1)

lLy=ve = 1+ (dy/de)* =1+[1/(2y2)]" =1+1/(4z). So

S=A927ry1/1+ -Z—Z zdmsz\/s?\/@dmzzwf\/zrﬁm
=2r[3(z+1} )3/2]4=7"[ (4c+1)3/2} = z(37VBT—17V17)
9.y =coshz = 1+ (dy/dz)? =1+ sinh®zx = cosh®z. So
S =2 fol coshz cosha dz = 2 [} 1(1 + cosh 2z) de = nfz + 1 smh2w]
=n(l+4sinh2) or w1+ 1(e® —e?)]
Moz=12+2)" = do/dy=3(> +2)1/2(2y)=y 42 =
1+ (dz/dy)® =1+ y* (1> +2) = (y* + )
) dy

S:27rf12y(y2 +1

it

=on[lyt+1y? P =om(4+2-1 1) ==
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S 2 oo / 1y
25, S:27r/ y“l-{— (j—i) dz = 27 1\ 1+—da:—27r/ 3 dac Rather than trying to
1 1

evaluate this integral, note that v/z% + 1 > v/z* = z* for > 0. Thus, if the area is finite,

oo 4 oo .2 oo
S=27r/ —x—:—l-dx>27r/ $—3d:c:27r/ -l—d:z:
1 T 1 T 1

But we know that this integral diverges, so the area S is infinite.

8

21. Since a > 0, the curve 3ay® = z(a — z)? only has points with y

£>0.(3ay* >0 = z(a—xz)>>0 = x>0)The

curve is symmetric about the x-axis (since the equation is 0 w

unchanged when y is replaced by —y). y =0whenz =0ora,

so the curve’s loop extends from z = 0 to z = a.

d oy _ 4o \2
o Bw’) = —[e(a—2)7] = 6ay

dy

i z-2a—-z)(~1)+(a—z)2 =

dy _ (a—z)[-2z+a—1] = dy 2_ (a-2)*(a—3z) (a—g)*(a—3x)° __3a
de ~ 6ay de) 36a2y? - 36a? z(a — z)?

the last fraction] _ (a — 3z)?
is 1/y> T 12az

1+ dy\* _ 14 a® —6az +9¢> 12az | o’ —6az +9z° o +6az+92®  (a+3z)?
dz) 12ax " 12az 12az h 12ax ~ 12az

e P FCCEC W T S EC RSN
(a)S—/mZOZﬂ'yds—Z'rr A Wi \/_Z_GE = 0 o

=3—7;-/0 (a2+2am—3m2)dx=%[a2w+ax2—wa]g=é%(a3+a3——a3)=—1-a3=—.

Note that we have rotated the top half of the loop about the x-axis. This generates the full surface.

(b) We must rotate the full loop about the y-axis, so we get double the area obtained by rotating the top half of

the loop:
e @ a+ 3z 4 @ 1/2
S:2-27r/ rds =47 T dx = T a + 3z) dx
=0 0 vV 12az 2\/ 3a 0 ( )
2 % 19 3/2 2w [2 a2 6 5/2} 27“/_ ( o5/? 6 5/2)
= — ax '° + 3z de = — j-az”“ + -z e + -a
/ ( ) V3a |3 5 5 3\/_ 5
_27r\/— 2 6\ 2_21V3(28) , 56rv3a’
3 35 B 15 45

forz # 0.
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2 2 2
z y y (dy/dx) z dy b x
29.— __—‘1 —e—— s — — — T —
a? U b2 = b? a? = dx ay
L (g Vet bt kaly? ba? +a't? (1 — 2¥a?) o + bia® — a®b%a
de ) aty? aty? - a4t? (1 — z2/a?) - a*b? — a2b2x?

_at+ b’ — a2z ot — (a® - V¥)a?
- at — q2x2 - a2(a? — z2)

The ellipsoid’s surface area is twice the area generated by rotating the first quadrant portion of the ellipse about the
x-axis. Thus,

N e o JE @
S=2 2 1 =) dz =4 ~va? —x2 d.
/0 Y + (da:) v 7r/0 a -z ava?—z? “

a —b2
47rb w/ — (a2 - b2)22 dx = b / —u? _du [u=+va?—b%z]

a2 — b2

EY 4mb U Jat — 2 + a_4 sin~?t X avere
S Ve —» g S|
drb m JE—B a%bsin™ V2L
= Vat —a?(a b2)+—81 nt Y| =27 b+ a
a?va? - b? a — 12

31. The analogue of f(x}) in the derivation of (4) is now ¢ — f(«}), so

n b
5= tm Y onfe — fa)] 1+ [ @P Ao = [ 2mle— f@)] 1+ [F@) do
i=1 a
33. For the upper semicircle, f(z) = V72 — 22, f'(z) = —x/Vr? — z2. The surface area generated is

r 2 r
5'1:/ 27r(7"—\/r2—m2) 1+ 2m 2da:=47r/ (7"— rz—mz)————r dz
—-r rt—T 0 r2 — g2

” 7_2
=47r/0 (—-———___T2 — —’r) dz

s 2
For the lower semicircle, f(z) = —vr2 — 22 and f'(z) = L 508 = 47r/ (—I— + 7‘) dzx.
0 T

” 2 r
Thus, the total areais S = S1 + S2 = 871'/ A dr = 8w [T2 sin~* (_a_:)] = 87r? (%) = 47%r2,
0 r2 — g2 r/lo

35. In the derivation of (4), we computed a typical contribution to the surface area to be 27 &%w

area of a frustum of a cone. When f(z) is not necessarily positive, the approximations y; = f (z;) ~ f(z}) and
Yi—1 = f(zi—1) ~ f(x}) must be replaced by y; = |f(z:)] ~ |f(27)] and yi—1 = |f(wi-1)| = |f(@7)]. Thus,

Yi— 1+yz
Y A A
2

| P;—1.P;|, the

/____
|Pic1 By = 27 | f (7)) 1+ [f(x}))* Az. Continuing with the rest of the derivation as before, we

obtain § = [ 27 | f(@)1/1+ [f’(m)]z dx
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8.3 Applications to Physics and Engineering

1. The weight density of water is § = 62.5 Ib/ft®.
(a) P=6d~ (62.51b/ft%) (3 ft) = 187.5 Ib/ft?
(b) F = PA = (187.5Ib/ft>) (5 ft)(2 ft) = 1875 Ib. (A is the area of the bottom of the tank.)
(c) Asin Example 1, the area of the sth strip is 2 (Az) and the pressure is §d = 6x;. Thus,

F=[6z-2dz~ (62.5)(2) [} zdz = 125[222]2 = 125(2) = 562.51b
0 (o} 2 0 2

In Exercises 3-9, n is the number of subintervals of length Az and «7 is a sample point in the 4th subinterval [z;— 1, ;).

3. Set up a vertical x-axis as shown, with z = 0 at the water’s surface and = T0
increasing in the downward direction. Then the area of the ith rectangular o T 2*
strip is 6 Az and the pressure on the strip is 627 (where § & 62.5 lb/ft®). 41t w;=6 [
Thus, the hydrostatic force on the strip is 6z; - 6 Az and the total F 6

X

n
hydrostatic force &~ 3 8z} - 6 Az. The total force

=1

F = lim i&m;“-6Ax=f266z-6dm=66f26mdz

n—o0 {23

=66[3a?]; = 65(18 — 2) = 966 ~ 6000 Ib

5. Since an equation for the shape is 22 + 4% = 10? (z > 0), we have

y = v/ 100 — z2. Thus, the area of the éth strip is 2 /100 — (z})2 Az

and the pressure on the strip is pgx;, so the hydrostatic force on the

strip is pga; - 2 /100 — (z¥)2 Az and the total force on the
n
plate = Y pgz; - 21/100 — (x})? Az. The total force
=1
n 10
F=lim ) pgz}-2+/100 — (z})2 Az = / 2pgz /100 — 22 dx

10
= —pg [3° (100 — 22)*/* (~2z) de = _pg[g(mo = x2)3/2]0 = —2pg(0 — 1000)

= 2000 pg ~ 2000 . 1000 - 9.8 &~ 6.5 x 10° N [p ~ 1000 kg/m® and g ~ 9.8 m/s>.]
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4ftwide  aftwide

7. Using similar triangles, Sfthigh = o7 fihigh’ so a = 3z and the 9 _ 12
! \
width of the ith rectangular strip is 12 4+ 2a = 12 + ;. The area of the a 12+ 4} \
strip is (12 + 7 ) Az. The pressure on the strip is 6z 8 2 2

9, From the figure, the area of the ith rectangular strip is 2 4/ 72 — (2} YAz

11.

n
F=1lim Y 6zi(12+2}) Az = [ 6z - (12+z)dz
=00 =1

=6 f; (120 +2%) dz = 5[6902 + %ﬂz = 5(384 + 312)

= (62.5)18%4 ~ 3.47 x 10" Ib

-r

and the pressure on it is pg(z; + r).

F= lim Z pg(z; +7)2 \/7‘2 —(x)? Az
i=1

= [T pg(z+7r) -2/ =22 de

=pg [I Vr?—a?2zxdc+2pgr [T Vr? —z?dx

The first integral is O because the integrand is an odd function. The second
integral can be interpreted as the area of a semicircular disk with radius r,

or we could make the trigonometric substitution z = r sin §. Continuing:

F = pg-0+2pgr - 1mr? = pgmr® = 1000g7r® N (SI units assumed).

8 wy 27 .
By similar triangles, ——= = — => w; = —=. The area of the ith x
Yy g 4\/3 r /3 4\/5 8m
rectangular strip is 2\% Az and the pressure on it is pg (4 NEE ) x¥
0
43 43 4/3
2z 2pg 2
F-——/ pg(4\/§——w)——d:c=8pg/ rdr — —= z° dx
0 V3 0 V3 Jo
V3 209 1 374v3 2pg
=dpglz?]2V? - 2 1 =192pg — L 64.3/3
pg| ]0 33 [ ]o rg 3v3

= 192pg — 128pg = 64pg ~ 64(840)(9.8) ~ 5.27 x 10° N
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13. (a) The top of the cube has depthd = 1 m —20 cm = 80 cm = 0.8 m.
F = pgdA ~ (1000)(9.8)(0.8)(0.2)> = 313.6 ~ 314N
(b) The area of a strip is 0.2 Az and the pressure on it is pgz; .

F = [y pgx(0.2)dz = 0.2pg[12%], , = (0.209)(0.18) = 0.036pg = 0.036(1000)(9.8)

= 3528 ~ 353N
15. (a) The area of a strip is 20 Az and the pressure on it is §x;. 40 ft
3 Rt 9 20 ft 9ft
F= / 6220 de = 205[-&] =205 2 = 906
0 2 0 2 3ft

=90(62.5) = 5625 Ib ~ 5.63 x 10° b

(b) F = [} 6220 dx = 206[12?]] = 206 - & = 8106 = 810(62.5) = 50,625 Ib ~ 5.06 x 10* Ib.

(c) For the first 3 ft, the length of the side is constant at 40 ft. For 3 < z < 9, we can use similar triangles to find the

lengthaza%=gg—x- = a=40-9_m

F = [} 6040dx + 7 62(40)25% dz = 405[%0:2]3 + 205 [2(9z — 2*)da
= 1806 + 36[$o” — §2°] = 1806 + 6[(B2 —243) - (¥ - 9)]

= 1806 + 6008 = 7806 = 780(62.5) = 48,750 Ib ~ 4.88 x 10* Ib

(d) For any right triangle with hypotenuse on the bottom, 0 -
cscl = ———A—m— = 40 3
hypotenuse 5
JAZ 62 /400
hypotenuse = Az cscf = Az el 6+ 0= ‘;09 Az * Jr 6
Ax
= (5
F = [? 5020 Y58 gg = 1(201/400)6[12?]" o dxeco=()as

=$.10v4096(81 - 9)
~ 303,356 b ~ 3.03 x 10° Ib

11. F = [} pgz - w(z) dz, where w(w) is the width of the plate at depth z. Since n = 6, Az = 852 = 1, and

Fr~8s=pg- 422 -w(2)+4-2.5 w(@5)+2-3-w(3) +4-35-w(35)
+2-4-wd)+4-4.5-w(45)+5 w(5)]
=1pg(2-0410-0.8+46-1.7-14-24+8-2.9+18-3.3+5-3.6)
= £(1000)(9.8)(152.4) ~ 2.5 x 10° N
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2
The moment M of the system about the originis M = 3 m;z; = myz1 + maza = 40 -2 +30- 5 = 230.

i=1

2
The mass m of the system is m = Y m; = m1 + ma = 40 4 30 = 70. The center of mass of the system is

i=1

_ 230 _ 23
M/m= %2 =2,

i=1

3 3
.m=3m=6+5+10=21. M, = > migi = 6(5) +5(-=2) +10(~1) = 10;
=

3 M, 1 M. 10
My = i, = 6(1 10(-2)=172="Y=—andyg= —= = —,
v i;mx 6(1) + 5(3) + 10(—2) z=— 57 andy = — 577 %0 the center of mass of the

system is (57, 39).

Since the region in the figure is symmetric about the y-axis, we know

that Z = 0. The region is “bottom-heavy,” so we know that gy < 2,

and we might guess thaty = 1.5.

A= [?(4—2?)dzs =2 [ (4~ 2*) dx = 2[4z — §2°]]
=2(8-3)=%

2
T = % / z(4 — %) dz = O since f(z) = z(4 — 2?) is an odd
—2

function (or since the region is symmetric about the y-axis).

_ 1 (%1 - 3 1 2 P 3 8 5 1 5]°
== | “(4—odz==.2.2 (16-8 de = = |160 — 22° + -
Y A/_22( ) de=g53 /0( e tat)dz= o 16e 37 757,
=5(32-F+8)=31-3+3)=3(%) =%

Thus, the centroid is (Z,7) = (0, £).

The region in the figure is “right-heavy” and “bottom-heavy,” so we know

z > 0.5 and ¥ < 1, and we might guess that Z = 0.6 and 7 = 0.9.

A:folewdxz[em](l):e—l,

Il

T =% [} ze®de = Ly[ze® — %]} [by parts]

=50-(-1=¢1,

y % Olé(em)deze}_l.%[e%c]l::r(gl:_l_)(eQ_l):E‘lLl'

Thus, the centroid is (%, ) = (eil, —;I;—l) ~ (0.58,0.93).
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7 A= [ (o= [ e?] =3-4=t y y=
T = %folm(\/_—m)dmzﬁfol(wsm—mz)dz'

=o[ta — a7 =6( - ) =6(&) = &
% 02[(\/5) 2]dw=6-%fol(z—1'2)dx

— 3’ - 32 =33 - 1) = 4

g

Thus, the centroid is (Z,7) = (2, 1).

29 A= f”/4(cosa: sinz) dr = [sinz + cosz]}/* = V2 - 1, ’
T=A"" fg’“ z(cosz — sinz) dz (5, y) = (0'27’0‘60).
y=sinx
= A7 z(sinx + cos ) + cosx — sin m]g/ * [integration by parts] J = cosx
Iry2-1 ' f
T
=AY Z /2= A = 0 P X
(4 ) \/i—l 4
g=A"1 0"/4 1 (cos® z —sin z) dz = 55 0”/4cos2wdm = lsin2z]j/* = & = 4(\/%_1)

71'\/5—4 1 -
4(\/5_1),4(\/5_1)) = (0.27,0.60).

Thus, the centroid is (Z,7) = (

31. From the figure we see that 7 = 0. Now y

5 2 3/2]°

=f02y/5—:cdm=2[—§(5—m) ]0
=2(0+2-5"%) =25

SO

=1 P u[Eoz— (—vF—g)]ds =1 [$ 2% E—adz

=4 f\(}g 2(5 — u?)u(—2u) du u=15—zz=5—u2u?=5—xdr=—2udu]

-
=4 [P (5—u) du=4[3u® — 3uf]Y" = 2o (2VE-5VB) =5-3=2

Thus, the centroid is (Z,7) = (2, 0).
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33. By symmetry, My =0andZ =0. A= bh =1 -2-2=2. y
2
y=2-2x
My=p [} L(2—20)de =2p [ 2(2 - 22)% da -
=(2-1-1.2%) [ (1~2)" do
=4 [0 u?(~du) [u=1-g,du=—dx]
o -1 0 1 x
=l =~a(-1) = 4
Y= mMs= o5 My = 755 - § = %. Thus, the centroid is (7, 7) = (0, §).
2 x 372
_ ®_ MNgp= |2 _ T
35 A-—/O (2 x)ala:—{h12 3]0
'(2-4)

L (¥, y) =~ (0.781,1.330)

2.5

A
__l_mzz_—.gf——_m—‘l:) [use parts]
T Alln2  (In2)® 4], P
1{ 8 4 1
==|— - —4
Alln2  (In2)? * (ln2)2]
1 8 3 1 -
e T 4} ~ 5 (1.207453) ~ 0.781
S B Y PO 22 _1 T _ 1 1[2* z*]?
y—A/O @) - ()] de = 4 , 22 =S T,
1

1/ 16 32 1 1/ 15 16 1
== _<__ — > = ;L(m - ?> = 2(2.210106) ~ 1.330

Since the position of a centroid is independent of density when the density is constant, we will assume for convenience that p = 1 in

Exercises 36 and 37.
37. Choose z- and y-axes so that the base (one side of the triangle) lies along Y
B[O D)
the z-axis with the other vertex along the positive y-axis as shown. From
¢y +bx=bc
geometry, we know the medians intersect at a point % of the way from ay +bx=ab
each vertex (along the median) to the opposite side. The median from B ‘? a g
a, 0 *

goes to the midpoint ($(a + ¢),0) of side AC, so the point of
intersection of the medians is (£ - £ (a + ¢), $b) = (3(a +¢), 3b).

[continued]
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This can also be verified by finding the equations of two medians, and solving them simultaneously to find their

point of intersection. Now let us compute the location of the centroid of the triangle. The area is A = (c — a)b.

%[ffx.g(a—m)dm-f—focx- %(c—;n)dz] = %[% f: (ax —2?)dz+ 2 [3 (cz—:vz)dx]

T=
= #l3es’ - 1%, + £ljee’ - §o°]; = &[-30® + 3a%] + £} - 3]
=ate—a) _gs + c(cz—a) 63 = 3w (c® —a®) = 2=

and

7= 1[0 2(a~a)® dz+ [ Y2(c—2))° da:]

2 2 c—a)b?
a®) + 5 c3—c3+lc3)} =%[%(—a+6)} = ol T =4

a—l—cé
3’3

Remarks: Actually the computation of % is all that is needed. By considering each side of the triangle in turn to be

Thus, the centroid is (Z,7) = < >, as claimed.

the base, we see that the centroid is % of the way from each side to the opposite vertex and must therefore be the
intersection of the medians.

The computation of 7 in this problem (and many others) can be simplified y
by using horizontal rather than vertical approximating rectangles. If the T T
length of a thin rectangle at coordinate y is £(y), then its area is £(y) Ay, 17
its mass is pf(y) Ay, and its moment about the z-axis is }’I ey

AM, = pyé(y) Ay. Thus, i c—a {

M, = /pyﬁ(y) dy and y = -f-&%ﬂﬁ =% Jytly) dy

In this problem, ¢(y) = 9;1)(—1 (b — y) by similar triangles, so

<|

1 [fe-a 2 [° 2 2 1,02 137b_ 2 b
:Z/o ) y(b—y)dy:ﬁA(by—y)dyzﬁ[iby_gy]():b_2._6_=§

Notice that only one integral is needed when this method is used.
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39. Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass
is 8. Using the result of Exercise 37, the triangles have centroids (—1,2) and (1, 2). The
centroid of the rectangle (its center) is (0., —%) So, using Formulas 5 and 7, we have

M

y:—:

3
Z mMiYs = %[2(%) —1—2(%) +4(—%)] = %(%) = Tli’ and T = 0, since the lamina is symmetric

about the line = = 0. Thus, the centroid is (Z,7) = (0, 315)

1. A cone of height & and radius r can be generated by rotating a right Y

triangle about one of its legs as shown. By Exercise 37, % = %r, so by the

Theorem of Pappus, the volume of the cone is h
: = >
V = Ad = (1 - base - height) - (27T) = 1rh - 2n(%r) = $nr’h. 5
0 r X

43. Suppose the region lies between two curves y = f(z) and y = g(z) where f(z) > g(z), as illustrated in Figure 13.
Choose points x; witha = zo < 21 < --+ < £, = band choose ] to be the midpoint of the 4th subinterval; that
i,y =T = %(mi_l + z;). Then the centroid of the ith approximating rectangle R; is its
center C; = (T, 3[f(T:) + g(z:)]). Its areais [f(Z:) — g(Z:)] Aw, so its mass is
plf (@) — g(z:)] Az. Thus, My(R:) = plf(Z:) — 9(%:)] Az - Ty = p&: [f(Z:) — 9(Ti)] Az and
Ma(Rs) = plf (70) — 9(@:)] Az - 4[£(Z5) + 9(F:)] = p- 3 [£(F:)? - 9(7:)?] Ac. Summing over i and taking

the limit as n — oo, we get M, = nh_)n;o > PZi [f(T:) — g(T:)] Az = pfabw[f(m) — g(z)] dz and
M, = nh_)n;o Sipe 2[f(@)? - g(®)*] Az = pf: $[f(=)? — g(2)?] dz. Thus,

My My _

b
iz—n—;:p_A—%/ z[f(z) — g(z)]dz and F=

b
= Jg_A - %/ 3[f(2)* - 9(2)"] do

84 Applications to Economics and Biology

1. By the Net Change Theorem, C(2000) —~ C(0) = 02000 C'x)dz =
C(2000) = 20,000 + f;**° (5 — 0.008 + 0.000009z°) dz = 20,000 + [5z — 0.004z2 + 0.0000032°] 2°*°
= 20,000 + 10,000 — 0.004(4,000,000) + 0.000003(8,000,000,000) = 30,000 — 16,000 -+ 24,000

= $38,000
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3. If the production leve] is raised from 1200 units to 1600 units, then the increase in cost is

C(1600) — C(1200) = [;07 C'(z) dex = [15v7 (74 + 1.1z — 0.002z* + 0.00004z°) de

1600
1200

= 64,331,733.33 — 20,464,800 = $43,866,933.33

= [74z + 0.552° — 29%25° 4 0.00001z"]

450

5.p(x)=10 = m“lo = z+8=45 = x =37 6](;)
507
Consumer surplus = [p ~10]dz T ( 450 —~10)dz 0} consumer
i 0 0 x+8 surplus

= [4501n (z + 8) — 10z]%"

= (4501n45 — 370) — 450 In 8
=450In(%2) — 370 ~ $407.25

1. P=pg(z) = 400=200+0.2z%? = 200=0.2z%2 = 1000=2%% = z=1000%3 = 100.
Producer surplus = 100 [P — ps(z)]dx = 100 [400 _ (200 +0. 2:63/2)] do = 100 (200 3/2> d

100
= [2002 — £a*/2] ™ = 20,000 — 8,000 = $12,000

800,000¢ ~%/5000

9 p(=) = =0 500

=16 = x=x1 ~3727.04.

Consumer surplus = [ [p(z) — 16] dz ~ $37,753

L — .
(=3727,16)

4000
M. £(8) — f(4) = [5 f/(t)dt = [°vEdt = [ t3/2] = 2(16v/2 — 8) ~ $9.75 million

mPR* _ 7(4000)(0.008)*

Bh==r= 8(0.027)(2)

~ 1.19 x 10™* em®/s

15, [Pet)dt = [}P1t(12 —t)dt = [}* (3t — 1¢%) dt = [34* — 1—12t3](1)2 = (216 — 144) = 72 mg - s/L.

A & mg
f012 c(t) dt T T2mg-s/L

Thus, the cardiac output is F' =
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8.5 Probability

1. (a) |, 400000000 f(z) dz is the probability that a randomly chosen tire will have a lifetime between 30,000 and

40,000 miles.

(b) f;;oo o f(x) da is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

3. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) > 0 for

all 7, and (2) [77 f(z)dz = 1. For0 < 2 < 4, we have f(z) = &z /16 — 22 > 0, 50 f(z) > 0 for all .
Also, [%° f(z)dx = [} av/16— 22 dz = —~2= [(16 — 2?)V/?(~22) do = -1 [%(16 - w2)3/2]z
= -&[(16- m2)3/2]z = -4(0-64)=1.
Therefore, f is a probability density function.
® P(X <2) = [?_ f(@)de= [} &o V16— oPdo = — 35 [2(16 — 22)/%(~2¢) do
= - [2(16 - 2)3/2]. ~& |06 - :cz)?’/z]z = — 4 (122 — 16%/2)
=55 (64—12V12) = 2 (64— 24/3) = 1 — 3/3 ~ 0.350481
5. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(z) > 0 for
all z, and (2) f > _f(z)dz = 1. Since f(z) =0or f (x) = 0.1, condition (1) is satisfied. For condition (2), we
see that [%_ f(z)dz = 010 0.1dz = [1—10m] (1)0 = 1. Thus, f(z) is a probability density function for the
spinner’s values.

(b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean to be halfway

between the endpoints of the interval; that is, z = 5.

p= [ zf(z)dz = [}°x(0.1)de = [2—10272](1)0 = 100 — 5, as expected.

7. Weneed to find mso that [ f(t)dt =2 = lim [®le ¥Sdt =21 = lim |i(—=5let/5]" =1 =
m 2 posooYm B 2 5 2

T— 00

(-DO-e™?) =1 = e™" =} = -m/S=lhl = m=-5ni=>5n2~ 347 mn.
9. We use an exponential density function with 4 = 2.5 min.
@ P(X > 4) = [7 f(t)ds = lim [F e/*%dt = Tim [-e7/2%)" =0+ e74/2% ~ 0,202

2
(® P(0< X <2)= [2 f(t) dt = [—e*f/“] = —e~2/25 | 1~ 0.551
0
() We need to find a value a so that P(X > a) = 0.02, or, equivalently, P(0 < X < a) = 0.98 <
[ ft)dt =098 « [ emt/2 5]( 098 & —e*2511=008 & ¢ %25=002 <

—a/25=1n0.02 & a=-25In 316 = 2.5In50 ~ 9.78 min ~ 10 min. The ad should say that if you

aren’t served within 10 minutes, you get a free hamburger.
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=_1 (x — 9.4)2> . . . _ '
. Hx = 10 = / exp| —~————— } dz. To avoid the improper integral we approximate it by the
X2100= |, 12v2 p( 2.4.2° proper integral we app y

. —9.4)2
integral from 10 to 100. Thus, P(X > 10) = / ex (— (z

= ( ) w 42vom P 2-4.22
or computer to estimate the integral), so about 44 percent of the households throw out at least 10 1b of paper a week.

Lo0

) dz =~ 0.443 (using a calculator

Note: We can’t evaluate 1 — P(0 < X < 10) for this problem since a significant amount of area lies to the left of
X =0

SE (@ = n)’

o exp (—— 207 > dz. Substituting ¢ = il o

13. P(p—2a§X§u+2a):/

and dt = —1- dz
p~20 O g

gives us

2 2
1 &) 1 / - t%/2
o dt) = dt ~ 0.9545
/ e lodt) == | e

—2 oV2T

15. (a) First p(r) = %rze"zr/“o > 0 for r > 0. Next,
0

e 4 5 _or/a 4 .. Y2 —ar/a
/ p(r)drz/ —r’ O dr = — lim e O dp
—c0 o G G o0 Jo

By using parts, tables, or a CAS , we find that [ 2%€"” dz = (e*®/b°)(b%z® — 2bz + 2). (%)

4
Next, we use (x) (with b = —2/a¢) and I’'Hospital’s Rule to get e

0

3
[g_os (_2)} = 1. This satisfies the second

condition for a function to be a probability density function.

c - 4 72 4 . 2r .
(b) Usmg 1 Hospltal S Rule, Eg TILILIO m = a—g rlingo W = a—g rl—l—vngo W/‘a—o

To find the maximum of p, we differentiate:

=0

’ . i 2 —2r/ag _3 —-2r/ag - :4_ —2r/eg .
P = o | e len(an)] = Semen (-4

0 ao

Pr)=0 & r=00rl=— 4 r=uag [ao559x 107" m]. p/(r) changes from positive to
ag

negative at 7 = ao, so p(r) has its maximum value at r = aq.

(¢) It is fairly difficult to find a viewing rectangle, but knowing the 1x10'°

maximum value from part (b) helps.

4 _
plao) = j—gaée—"’“o/ 0 — = % ~ 9,684,098,979

With a maximum of nearly 10 billion and a total area under the curve

4 X107
of 1, we know that the “hump” in the graph must be extremely ¢

narrow.
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(@Hwa/ﬁ

o %
(with b = —2/aq),

4aq 4
s/ ds = P(dao) = / 55826_25/“0 ds. Using (*) from part (a)
0 0

P(dag) = = [%‘%ﬂ (_4_32 y Lo 2)]4a0 = %(f—i) [e75(64 + 16 + 2) — 1(2)]

ad a3 ag o a
=—1(82¢7% - 2) =1 —4le™® ~ 0.986
co 4 .. = . . .
©@up=[ o rp(r)dr = -3 thm fot rie=2/%0 g, Integrating by parts three times or using a CAS, we find that
0 —_— 00
bx
2
fac?’e"“c dr = eb—4 (b3m3 — 3b%2? + 6bz — 6). Sowithb = o we use I’Hospital’s Rule, and get
_ 4 ad 3
F=a3 {_ 16(_6)} - 2%
Review

CONCEPT CHECK

. (a) The length of a curve is defined to be the limit of the lengths of the inscribed polygons, as described near
Figure 3 in Section 8.1.

(b) See Equation 8.1.2.
(c) See Equation 8.1.4.

L@ 8= [l2nf(z)\/1+[f(2)) de
O fz=g(y),c<y<dthenS = ["2my+/1+[¢¥)]*dy.

© 8= [ 2ma\/1+[f(@)*dz or = [ 2rg(y)/1+ g (W) dy
. Let ¢(z) be the cross-sectional length of the wall (measured parallel to the surface of the fluid) at depth z. Then the

hydrostatic force against the wall is given by F = [ : 8zc(z) dz, where a and b are the lower and upper limits for
at points of the wall and § is the weight density of the fluid.

. (a) The center of mass is the point at which the plate balances horizontally.

(b) See Equations 8.3.8.

. If a plane region R that lies entirely on one side of a line £ in its plane is rotated about £, then the volume of the
resulting solid is the product of the area of % and the distance traveled by the centroid of R.

. See Figure 3 in Section 8.4, and the discussion which precedes it.

. (a) See the definition in the first paragraph of the subsection Cardiac Output in Section 8.4.

(b) See the discussion in the second paragraph of the subsection Cardiac Output in Section 8.4.

. A probability density function f is a function on the domain of a continuous random variable X such that

f; f(z) dz measures the probability that X lies between o and b. Such a function f has nonnegative values and
satisfies the relation || p, f(z) dz = 1, where D is the domain of the corresponding random variable X. If D = R,
or if we define f(z) = O for real numbers = ¢ D, then [ f(z) dz = 1. (Of course, to work with f in this way,

we must assume that the integrals of f exist.)
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9. (a) f f (z) dz represents the probability that the weight of a randomly chosen female college student is less than
100 pounds.

®) = [, of (@) do = [{° of(z) da
(c) The median of f is the number m such that f°° flz)dz = :.

10. See the discussion near Equation 3 in Section 8.5.

EXERCISES
Ly=3§(E"+4% = dy/de= 3" +4)%(2) =

2 2
1+ (%) =1+ [-;-w(wz +4)1/2} =1+ 12%(@? +4) = do* + 2% +1 = (22 +1)°

Thus, L = fOS\/ (322 + 1)2dm = f: (32° +1) dz = [ém3+m]2 =1

4
x 1 1 _ 1
3'(a)y=ﬁ+ﬁ=1—6w4+§z2 = —dw=2x3—z =

1+ (dy/dz)®> =1+ (32° -z 3)2=1+ﬁm6—%+w‘6=1—%w6+%+w"6=(%:cs—f-:c'a) .

Thus, L = fl( ® +27%) do = |

—
sl

(b) S = ff onz(i2® +27%) dz = 2r ff (%m‘L +z7?) dz = 2m[5a® — 1]

(B9 - (b -1)] =20(§ 4~ +1) = 2n(3)) =

5 y= e = dy/dz = —2ze™™ = 1+ (dy/dz)*> =1+ g% %",
Let f(z) = v/1 + 422e~2=", Then
L= / F()do~ 5o = E=0007(0) +-45(05) +27(1) + 4£(15) + 2(2) + 4£(2.5) + £(3)]

~ 3.292287
7.y=/lm\/\/z—1dt = dy/dr=1/vz-1 = 1+ (dy/dz)’ =1+ (vVa-1) =z
Thus, L = [}° \/Vzdz = [z 1/4d:z:—-{5/4L =4(32-1) =124
9. As in Example 1 of Section 8.3, —:z:% = 2¢=2-zand

w=2(15+a)=3+2a=3+2—x =5~z Thus,

F = [? pgz(5—z)de = pg[S32® — Lz ] =pg(10 — 8) = 226 [pg = 6] ~ 2 -62.5 ~ 458 Ib.
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A:f_l2 [(4-2%) —(z+2)] daw::f_:L:2 (2-z-2%)dz= [2m—%m2—%x3]1_2
b (-2ep - o

and g=A"1[1 [(4~w2)2—(a:+2)2} de =1 [, (z* — 92° — 4z +12) da

—2

= 5l3e° - 32" — 20 +122] = L[(} -3-2+12) - (-2 4248 -24)] =

s

Thus, the centroid is (Z,y) = (_%, ?)_

An equation of the line passing through (0, 0) and (3,2) isy = 2z. A = % - 3.2 = 3. Therefore, using

Equations 8.3.8, % = —;—f; z(iz)de = £ [x3]3 =2 andj = %f?’ 1

Thus, the centroid is (Z,7) = (2, £).

359

The centroid of this circle, (1,0), travels a distance 2m(1) when the lamina is rotated about the y-axis. The area of

the circle is 7(1)®. So by the Theorem of Pappus, V = A(27Z) = m(1)22r(1) = 2r2.
z=100 = P =2000— 0.1(100) — 0.01(100)2 = 1890

Consumer surplus = 0100 [p(z) — Pldx = 0100 (2000 - 0.1z — 0.01z* — 1890) dx

] 100

= [110z — 0.052" — 222°] ™ = 11,000 — 500 — 120 ~ §7166.67

3

@) Z—’Esin(liox) if0<z<10
T =

0 if z<0orz> 10
(a) f(z) > 0 for all real numbers z and

J% f@)de = [} &5 sin(Fa) do = & - L[~ cos(&a)]

=3(—cosT+cos0)=1(1+1)=1
Therefore, f is a probability density function.

(b) P(X < 4) = ffoo flz)dz = fo4 Zsin(&z)de = 1[~ cos(f%a:)]é = 3 (—cos Z + cos0)

~ $(—0.309017 + 1) ~ 0.3455
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©p= fio zf(z)dz = fom Zasin(Lz)dr
=[0 %" %u(sinu)(%) du [u= 2z, du=F dr)

=2 [Fusinudu £ 5 [sinu—ucosuf =3[0 —n(—1)] =5

This answer is expected because the graph of f is symmetric about

the line z = 5.

0 ift<O0

21. (a) The probability density function is f(t) =
d Y ¢ & fe7® if >0

3

PO<X<3)=[2let/dt= [—e_t/s] —e7%/8 4+ 1~50.3127

0 0

() P(X > 10) = [;7 2e™/%dt = lim [~e™"®]" = lim (—e™*/® 4+ 71%/%) = 0+ ™%/ ~ 0.2865

T—00 10 r—00
xz

(c) Weneed to find m suchthat P(X >m) =3 = [®le *8dt=1 = lim [—e"t/s] =% =

T =00 m

lim (—e‘“/s-i—e‘m/s) =1 = em™f=1 = —m8=hi =

T—O0 2

m=—8 ln% = 81n2 = 5.55 minutes.
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La?+y? <4y & 2+ (y—2) <4,508is part of a circle, as shown
in the diagram. The area of S is

\/4y y2dy 2 [%3\/41;—3/2--}-2003_1(2—'2‘3)]1 [a=2]

0
=—2v3+2cos7!(}) —2cos*1

=-2+25) -20=%-¢

3
Another method (without calculus): Note that § = ZCAB = %, so the area is
(area of sector OAB) — (areaof AABC) = £(2°)2 — 1(1)v3 =22 — L&

3. (a) The two spherical zones, whose surface areas we will call Sy y

and Sz, are generated by rotation about the y-axis of circular

arcs, as indicated in the figure. The arcs are the upper and

lower portions of the circle 2® + y? = 2 that are obtained

when the circle is cut with the line y == d. The portion of the

upper arc in the first quadrant is sufficient to generate the

upper spherical zone. That portion of the arc can be described

by the relation z = +/r? — y? ford < y < r. Thus, dz/dy = —y/+/7? — y? and

_ dz . y? . r? rdy
ds—\/1+(dy) dy--\/1+r2_y2dy— dy—m

From Formula 8.2.8 we have

S, = /27r:1:“1+ dm dy'-/ 2 yz\/&— 2mr dy = 2wr(r — d)

Similarly, we can compute Sz = [ fr 2z /1 + (dz/dy)? dy = | fr 2w dy = 2nr(r + d). Note that
S1 + S2 = 47r?, the surface area of the entire sphere.

(b) r = 3960 mi and d = r (sin 75°) ~~ 3825 mi, y
so the surface area of the Arctic Ocean is about
r
2mr(r — d) ~ 27(3960)(135) = 3.36 x 10° miZ. 4| Loso
r X

361
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(c) The area on the sphere lies between planes y = y; and y = yz, where Y2 — y1 = h. Thus, we compute the

v2 2 vz
surface area on the sphere to be S = 2mr 4 1+ <%E‘> dy = / 2nrdy = 2rr(y2 — y1) = 2wrh.
v Y 9

This equals the lateral area of a cylinder of radius r and x=r

height A, since such a cylinder is obtained by rotating the line

N

z = r about the y-axis, so the surface area of the cylinder

between the planes y = y; and y = 2 is

y
-
X
Y2 dz 2 y2 \ _
A=/ 271'1:1/1—5-(—) d =/ 2/ 1+ 024 Y=
Y1 dy Y Y1 Y \/

P
Yy=y1

= 27ry| = 2nr(ya —y1) = 2nrh

(d) h = 2rsin 23.45° =~ 3152 mi, so the surface area of the y
Torrid Zone is 2rh = 27(3960)(3152) =~ 7.84 x 107 mi®.

23.45°

~
/J :

T

-~
.

5. (a) Choose a vertical xz-axis pointing downward with its origin at the surface. In order to calculate the pressure at
depth z, consider n subintervals of the interval {O, z] by points z; and choose a point z; € [a:i_l, m,] for each 1.
The thin layer of water lying between depth x;_ ; and depth x; has a density of approximately p(z}), so the
weight of a piece of that layer with unit cross-sectional area is p(z; )g Az. The total weight of a column of

water extending from the surface to depth z (with unit cross-sectional area) would be approximately

p(z7)g Az. The estimate becomes exact if we take the limit as n — oo; weight (or force) per unit area at

o

i=1

depth zis W = nh_rgg il p(x;)g Az. In other words, P(z) = [ p(x)g dz. More generally, if we make no

assumptions about the location of the origin, then P(z) = Po + [ p(x)g dzx, where P, is the pressure at z = 0.

Differentiating, we get dP/dz = p(z)g.

(b) F=[" P(L+z)-2Vr?—z?dz
= fir (PO + foLﬂc Poez/Hg dz) 2Vr? -2 dz
| = Po [T, 2V =@ do+ pogH [T, (HFT 1) 27 =2 do

= (Py— pogH) [’ 2 Vr2 —x2dx + pogH I, et/ H o\ /r7 T2 dy
= (Po — pogl) (n7%) + pogHe '™ [T e/ . 2/r? — 2% dw
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7. To find the height of the pyramid, we use similar triangles. The first figure shows a cross-section of the pyramid
passing through the top and through two opposite corners of the square base. Now | BD| = b, since it is a radius of

the sphere, which has diameter 2b since it is tangent to the opposite sides of the square base. Also, |AD| = b since

AADB is isosceles. So the height is | AB| = v/bZ + b? = 1/2b.

Ph
e £ | Za\

B C

We first observe that the shared volume is qual to half the volume of the sphere, minus the sum of the four equal
volumes (caps of the sphere) cut off by the triangular faces of the pyramid. See Exercise 6.2.49 for a derivation of
the formula for the volume of a cap of a sphere. To use the formula, we need to find the perpendicular distance 4 of
each triangular face from the surface of the sphere. We first find the distance d from the center of the sphere to one
of the triangular faces. The third figure shows a cross-section of the pyramid through the top and through the

midpoints of opposite sides of the square base. From similar triangles we find that

d_|AB] _ V2b g V28 V6,

6140 i (van? T YT Am 3

Soh=b—d=b— ¥8b=2=8p S0, using the formula V = wh%(r — h/3) from Exercise 6.2.49 with r = b,

we find that the volume of each of the caps is

2
7r(3—_—3‘/6b) (b - 3;.?3/31)) = 18=6V6 0483 (2 — £+/6)7b>. So, using our first observation, the
shared volume is V' = 3 (§7b°) — 4(3 — £v6)7b® = (Ev6 — 2)7b°.

9. We can assume that the cut is made along a vertical line z = b > 0, y
that the disk’s boundary is the circle 2 + 4 = 1, and that the center
of mass of the smaller piece (to the right of = = b) is (%, 0). We

wish to find b to two decimal places. We have

1 fblx-Z\/l—:c2dac
= Tzl g =
2 2 vi—22de

. Evaluating the numerator gives us

~ fy =) (-2)do = -3 (1 —w"’)m}: = ~2[0- (1~ b%)*?] = 2(1 - b*)¥>. Using
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Formula 30 in the table of integrals, we find that the denominator is
[#v1—22 + sin_lx]; = (0+ %) — (bv/T = b2 +sin™'b). Thus, we have

1—5_ %(1—b2)3/2
2 Z-bv1-b2 —sin"1p’

equation numerically with a calculator or CAS, we obtain b ~ 0.138173, or b = 0.14 m to two decimal places.

or, equivalently, 2(1 —5%)*/2 = Z — 15/T =57 —  sin~'b. Solving this

1. If h = L, then
_ areaundery = Lsing _ [ Lsin6df _[reosfly  —(-1)+1 2
" areaofrectangle xL R T T

P

If h = L/2, then

_areaundery = 7Lsing _ [ 3Lsinfdf  [—cosb]]

P= -

™

2
area of rectangle nL o7 2



